Размеры буронабивные сваи: технология и таблица несущей способности

Содержание

Диаметры буровых свай при расчете нагрузки ⋆ Смело строй!

Прежде чем приступать к проектированию и тем более строительству свайного фундамента, необходимо пройти ряд подготовительных этапов, заключающих в себе изыскания и расчеты различного типа. Результатом правильно проведенных предварительных мероприятий будет прочный, экономичный, и, главное, надежный фундамент. Одной из ключевых характеристик, влияющих на рентабельность того или иного типа свай, являются геометрические параметры свайных колонн.

Верно определить размеры поперечного сечения, глубину заложения, количество скважин и другие параметры, значит построить надежное основание для будущего здания.

Типология буронабивных свайных фундаментов

Буронабивные свайные фундаменты — это одна из немногих конструкций, не поддающихся строгой классификации. Типовые размеры, представленные в различных сортаментах, сводах правил и государственных стандартах, являются лишь приблизительными рекомендациями. Тогда как серийно производимые изделия должны пройти ряд строгих проверок на соответствие стандартам качества, буронабивные сваи практически невозможно испытать, поскольку изготавливаются они в полевых условиях и закладываются прямо в грунт.

Бетонируемые непосредственно на строительном участке, буронабивные сваи отличаются высокими показателями прочности, вычислить которые можно только эмпирически. Испытания, проводимые на опытных образцах, показывают работу исключительно данных экспериментальных изделий. Поскольку условия изготовления, такие как тип грунта, уровень грунтовых вод, водонасыщенность рабочего слоя почвы, характеристики использованных арматуры и бетона, невозможно предугадать.Все имеющиеся прочностные и геометрические данные приблизительны и представлены только в качестве примера.

Конструкция буронабивных свай

Для типизации буронабивных свай используют деление по геометрическим признакам и технологическим особенностям производства и эксплуатации. СНиП 2.02.03-85 является актуализированной версий свода строительных норм и правил от 1983 года и предлагает классифицировать буронабивные сваи по способу изготовления следующим образом:

  • Буронабивные сплошного сечения:
  • с уширениями и без них;
  • без крепления стенок;
  • с укреплением боковых стенок скважин глиняным раствором или обсадными трубами (при дислокации свайной колонны ниже уровня грунтовых вод)
  • Буронабивные с применением технологии непрерывного полого шнека; Береты – буровые, изготовляемые с помощью плоского грейфера или грунтовой фрезы;
  • Буронабивные с камуфлетной пятой, устраиваемые с последующим образованием уширения с помощью взрыва (в том числе и электрохимического).

От способа изготовления свайных столбов зависит их окончательная стоимость и, главное, максимальные и минимальные размеры свайных колонн. Важно учитывать разновидность буронабивных свай до начала строительства, поскольку различные технологии производства предполагают разный набор специализированного оборудования, а также допустимые габариты скважин.

Предварительная подготовка к расчету

Геологические изыскания

Определенные геометрические характеристики свайного столба это не просто прихоть подрядчика и проектировщика, а потребность, обусловленная необходимостью подобрать наиболее рациональный объем фундамента, способный не только выдержать предполагаемую нагрузку будущего здания, но и сэкономить бюджет заказчика. В каждом отдельно взятом случае перед определением размеров и устройством фундамента необходимо проводить ряд следующих исследований и изысканий:

  • геологическая разведка местности – бурение контрольных скважин в стратегических точках участка для определения типа и величины грунтовых напластований, несущей способности грунта и прочих характеристик основания;
  • гидрогеологические изыскания – определение уровня грунтовых вод, водонасыщенности грунта;
  • расчет общей массы здания и определение предельной расчетной нагрузки на погонный метр фундаментной плиты;
  • окончательный расчет геометрических параметров буронабивной сваи и необходимого количества свай выбранного сечения.

Результатом расчета будет сводная таблица размеров свайных колонн, и схема наиболее рационального фундамента с учетом выбранного типа буронабивных свай. Расчет размеров свай можно доверить проектному отделу строительной фирмы или провести самостоятельно. Не рекомендуется использование данных геологической разведки, полученных на соседствующих земельных наделах. Информацию о глубине промерзания грунта можно найти в СП 22.13330.2011.

Расчет свайного поля

После проведения геологических изысканий можно приступать к расчету свайного поля. Учитывая тип грунта, а также расположение уровня грунтовых вод, можно составить представление о предположительной глубине заложения скважин. В расположенной ниже таблице приведены примерные рекомендации глубин заложения в слабо просадочные грунты скважин, безопасных при указанных условиях:

Рекомендация глубины заложения

Влажные, просадочные, высокопучинистые и другие ненадежные типы грунтовых оснований не рекомендуется использовать для устройства в них буронабивных свай.

Схема расположения грунтовых вод

Грунты с уровнем подземных вод выше, чем 1000 мм, считаются водонасыщенными и устройство свайных фундаментов на таких основаниях строго противопоказано технологией. Высокий уровень грунтовых вод можно понизить, проведя мероприятия по осушению, прокладке дренажных стоков и проч. Надежными слабо-пучинистыми грунтами считают те, в которых УГВ ниже глубины промерзания не менее чем на 1 метр.

Данные, приведенные в таблице, помогут составить общее представление о зависимости глубины заложения свайной колонны от характеристик грунта. Для получения более точных и надежных показателей следует провести несложный математический расчет. Принцип расчета состоит в принятии за эталон одного из показателей (например, диаметра) и расчета остальных, исходя из этих данных. Методом сравнения выбирают наиболее подходящую конфигурацию свай, из которых впоследствии формируют свайное поле.

Расчет длины висячих свай

Свайные столбы, не опирающиеся на несущий слой грунта, считают висячими. Это означает, что основную нагрузку воспринимают боковые стенки скважины,а не опорный слой грунта. Такие фундаменты предпочтительно устанавливать в районах с глубоким расположением каменистого слоя. Несущая способность таких свай не отличается от стоек аналогичного диаметра.

Если вам доступны данные геологии местности, а также тип грунта подходит для устройства буронабивных висячих свайных колонн, можно приступать к вычислению длины. Предполагаемая схема расчета выглядит следующим образом:

  • Принимаем некую среднюю ширину поперечного сечения сваи n=60 мм.
  • Рассчитываем нагрузку дома на погонный метр фундаментной плиты:

Висячие сваи различной длины

Чтобы рассчитать нагрузку на погонный метр фундамента, нужно общую нагрузку разделить на периметр. Посчитать общую нагрузку дома можно в соответствии с указаниями СНиП 2.02.01-83* или СП 22.13330.2011 – в соответствующих разделах можно найти алгоритм расчета, необходимые значения коэффициентов ветровой и снеговой нагрузки и другую необходимую информацию.

Полученное значение в кг/м и будет искомой величиной. Средняя масса одноэтажного кирпичного дома 50 тонн. Следовательно, для дома с периметром 20 метров (10×10) нагрузка на погонный метр составит 2500 кг/м.

  • Принимаем шаг колонн не менее трех диаметров и не более двух метров – для выбранного диаметра подойдет шаг 1,5 метра. Общее количество свай будет равняться 13.
  • Рассчитываем нагрузку на одну сваю: для этого разделим на величину шага свай нагрузку, воспринимаемую погонным метром фундамента. Получим значение приблизительно равное 1700 кг/м.Такой необходимый предел прочности необходимо заложить в одну сваю.
  • Для сваи площадью сечения 0,28 м2 такое значение прочности будет равняться:

F=R∙A+u∙Eycf∙fi∙hi;

Где F – несущая способность; R–сопротивление грунта, формулу расчета которого можно найти в СНиП 2.02.01-83*; А – площадь сечения сваи; Eycf,fi и hi– коэффициенты из того же СНиП; u–периметр сечения сваи, разделенный на длину.

Фундамент на буронабивных сваях

Для рассматриваемой в примере сваи двухметровой длины предельная нагрузка в глинистом грунте будет равняться 32,3 тонны, что позволяет уменьшить количество свай за счет увеличения шага свайных колонн, или уменьшить площадь сечения каждой отдельно взятой сваи, что позволит сэкономить средства, затраченные на бетонирование скважин.

Глубина таких свай будет зависеть исключительно от характеристик верхнего слоя грунта, относительного уровня расположения грунтовых вод и глубины промерзания. Следует также учитывать данные о промерзании грунтов и положении уровня грунтовых вод. Подробные примеры расчета глубины заложения висячих свай приведены в СНиП 2.02.01-83* в разделе 2 пункт 5 или в СП 50.102-2003.

Расчет длины стоек

Буронабивные сваи повышенной глубины заложения могут работать как стойки. И хотя обычно буровые типы являются висячими, встречаются конструкции с опиранием на твердый слой грунта. Расчет длины таких свай следует производить с учетом глубины расположения прочного несущего пласта.

Рекомендуем производить расчеты вручную или обратиться к специалистам.

Расчет длины буронабивных свай

В сети Интернет есть масса сервисов для автоматического расчета размеров и количества буронабивных свай. Использование таких сервисов накладывает определенный риск на пользователя, поскольку алгоритм не всегда учитывает все необходимые параметры, а владельцы программного обеспечения не несут ответственности за полученный результат.

Все сопутствующие вычисления несущей способности и геометрии сваи производятся в соответствии с технологией расчета свай-стоек и схожи с приведенным ранее примером. Дополнительную информацию о проведении расчета можно получить в вышеуказанных документах.

Зависимость диаметра сваи от типа монтажа

Площадь поперечного сечения буронабивной сваи соответствует площади скважного отверстия с поправкой на пластичность грунта. Форма замоноличиваемых свай близка к идеально цилиндрической, хотя и имеет незначительные уширения вследствие непроизвольного бокового продавливания бетонной смесью слабых мест грунта. Также в процессе заливки бетонной смеси путем увеличения подающего напора могут быть созданы умышленные уширения тела сваи для придания дополнительной прочности. Особенно актуальны такие действия для висячих свай.

Помимо всего прочего, средний диаметр буронабивной сваи определяется исходя не только из расчетных показателей, но и из возможностей оборудования, предназначенного для устройства того или иного типа свай. Примерные значения диаметров в зависимости от конструктивных особенностей установки:

Таблица диаметров в зависимости от конструктивных особенностей

Устройство баретов предполагается при наличии высокопучинистых нестабильных грунтов. Делать такой фундамент для среднестатистического основания нерационально. Конструкция бура предполагает устройство только скважин диаметром либо 300 мм, либо 400 мм.

Шаг диаметров определяется набором буров, используемых для устройства скважин того или иного типа. Конструктивные особенности каждой из разновидностей буровых установок не позволяют устраивать скважины большего или меньшего диаметра, чем те, что указаны в спецификациях на проведение работ. Ознакомиться с рабочими параметрами буровых установок можно у поставщика или арендодателя.

Дополнительные рекомендации

При устройстве свайного поля и определении размеров свайных колонн следует учитывать рекомендуемый шаг свай, от которого будет зависеть частотность скважин и распределение нагрузки. Посмотрите видео, по правильному монтажу свай:

Для равномерного распределения давления массы будущего здания на фундаментную плиту, необходимо соблюдать следующие правила:

  • максимальное расстояние между буронабивными сваями не должно превышать двух метров;
  • минимальный шаг свайных колонн должен находиться в пределах трех-четырех диаметров свай – в целях предотвращения обрушения стенок соседствующих скважин в сыпучих грунтах нужно увеличить минимальный предел;
  • компоновку свайного поля следует производить с учетом расположения свай в угловых точках фундамента;
  • по результатам расчета геометрических характеристик, после компоновки, общее количество свай должно соответствовать рекомендательным шаговым значениям – в случае превышения максимального шага свай следует увеличить количество скважин и уменьшить диаметр свай до предельно возможного;
  • максимальные и минимальные размеры диаметров скважин не должны превышать допустимые для выбранного типа монтажа.

Соблюдая данные рекомендации, можно спроектировать наиболее эффективный и рациональный фундамент, не беспокоясь о его надежности. При необходимости следует обратиться за помощью к специалистам, но все расчеты можно произвести самостоятельно, без особого труда.

СНиП 2.02.03-85. Сваи буронабивные и набивные: документы, требования

Дата: 30 октября 2018

Просмотров: 5849

Коментариев: 1

СНиП 2.02.03-85. Набивные и буронабивные сваиСНиП 2.02.03-85. Набивные и буронабивные сваи

Основополагающий аспект домостроения – сооружение надежного фундамента здания. От совершенства фундамента зависит прочность объекта строительства, его ресурс эксплуатации. Этим критериям полностью соответствуют фундаменты, основой которых являются буронабивные сваи, зарекомендовавшие себя, как эффективная, долговечная и современная конструкция, применяемая при возведении различных объектов.

Изготовление буронабивных элементов осуществляется путем бурения скважины, усиления ее стальным арматурным каркасом и последующим бетонированием. Отличительной особенностью конструкции данных опор является высокая несущая способность. Она позволяет использовать в качестве основания высотных зданий, мостов и других тяжело нагруженных сооружений, ответственных конструкций.

Для соединения их в общую конструкцию используется ростверк – монолитная железобетонная лента, связывающая оголовки свайДля соединения их в общую конструкцию используется ростверк – монолитная железобетонная лента, связывающая оголовки свай

Идея буронабивного основания очень простая: там, где невозможно с минимальными затратами докопаться до плотного грунта, можно использовать длинные столбики-стойки

Нормативные документы

К проектированию, установке этих изделий, воспринимающих всю нагрузку возводимого объекта, предъявляется комплекс серьезных требований, регламентированных нормативными документами. Отсутствует единый ГОСТ, сфера действия которого распространяется на буронабивные сваи.

Требования к ним объединены следующими строительными нормами и правилами:

  • 02.03, утвержденные в 1985 году, которые называются «Свайные фундаменты»;
  • 02.01, разработанные в 1987 году, именуемые «Земляные сооружения, основания и фундаменты»;
  • 03.01 выпуска 1984 года под названием «Железобетонные и бетонные конструкции».

Несмотря на то, что данные нормативные документы разработаны и утверждены достаточно давно, их требования актуальны в настоящее время. Каким параметрам должны соответствовать свайные фундаменты? Почему указанные нормы являются основополагающими? Рассмотрим детально, каким требованиям должны соответствовать буронабивные конструкции.

В представленном материале много полезного найдут специалисты по строительству и инженеры-проектировщики. Ведь их объединяет главная задача – обеспечение надежности постройки, соблюдение всех требований, установленных стандартами!

Классификация, расчет и другие важные параметры, без которых невозможно выполнить устройство буронабивных свай, содержатся в СНиП 2.02.03-85Классификация, расчет и другие важные параметры, без которых невозможно выполнить устройство буронабивных свай, содержатся в СНиП 2.02.03-85

Таблица для определения несущей способности 1 м/п буронабивной сваи-стойки

Классификация свай

В соответствии со СНиП забивка свай, применяемых при строительстве, выполняется различными методами. По способу заглубления сваи делятся на следующие типы:

  • Армированные бетоном сваи забивного принципа погружения, которые вдавливаются в грунт с помощью вибрации или молотов.
  • Железобетонные опоры–оболочки, формирование которых осуществляется с выемкой грунта и заливкой полностью или частично раствором.
  • Бетонные, предусматривающие возможность армирования, набивные сваи, при обустройстве которых раствор бетона заливается в скважину, полученную путем вытеснения грунта.
  • Железобетонные, полученные методом бурения грунта, при котором в скважины помещается стальная арматура и заливается бетонная смесь.
  • Сваи винтовые, представляющие собой стальную трубу с винтовой частью, погружение которой осуществляется путем завинчивания.

Рассмотрим детальнее буронабивные конструкции, как наиболее широко применяемые, востребованные при строительстве. По способу устройства они разделяются на буровые и набивные сваи.

Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа фундамента, в том числе свайного, для определения вида свай и их габаритовРезультаты инженерных изысканий должны содержать данные, необходимые для выбора типа фундамента, в том числе свайного, для определения вида свай и их габаритов

Свайные фундаменты следует проектировать на основе результатов инженерно-геодезических, инженерно-геологических, инженерно-гидрометеорологических изысканий строительной площадки

Набивные опоры

Их обустройство осуществляется следующими путями:

  • методом погружения в грунт специальных труб с временно закрытым торцом, которые постепенно извлекаются по мере заливки бетонного раствора;
  • способом вибрационного уплотнения бетонного раствора, которым заполнена предварительно подготовленная скважина;
  • путем заполнения бетоном конусообразной или пирамидальной скважины, заблаговременно выштампованной в грунте.

Буровые опорные элементы

Конструкции буровых свай отличаются способом их формирования, который предусматривает:

  • Бетонирование скважин, выполненных в различных видах грунтов, расположенных как выше уровня грунтовых вод без укрепления стенок, так и ниже, с фиксацией стенок раствором глины или обсадными трубами.
  • Использование сборного вибрационного сердечника для уплотнения бетонных опор круглого сечения.
  • Уплотнение щебня, подаваемого в забой.
  • Формирования в опорной части полости, полученной методом взрыва с последующим заполнением бетонной смесью.
  • Инъекционное нагнетание цементно-песчаного состава или бетонного раствора в предварительно пробуренную полость диаметром 15–25 см.

Определив вес здания, можно подобрать нужное количество свайОпределив вес здания, можно подобрать нужное количество свай

Бурение скважины под буронабивные сваи

Подготовительные мероприятия

Согласно положениям СНиП, до того, как устанавливать буронабивные сваи, следует произвести инженерные изыскания, определяющие расчетные усилия, которые будет воспринимать фундамент. Свайные фундаменты разрабатывают, основываясь на результатах следующих видов изысканий, проведенных на месте застройки:

  • геологических;
  • гидрометеорологических;
  • геодезических.

Также учитываются особенности объекта строительства, усилия, действующие на основание, особенности эксплуатации сооружения. Только после этого, согласно СНиП, определяется вид набивного фундамента, размеры опор, способ их обустройства. Ответственность за достоверность результатов изысканий несет организация-проектировщик.

Буровым работам и набивным мероприятиям предшествует планировка зоны строительства на заданном уровне. Затем выполняется разметка, закрепление координат в условиях строительной площадки.

Места расположения буронабивных опор документируются специальным актом, содержащим информацию о привязке свай к высотным отметкам.

На сваях сегодня стоят тысячи кирпичных девятиэтажек и никто не сомневается в их надежностиНа сваях сегодня стоят тысячи кирпичных девятиэтажек и никто не сомневается в их надежности

Точное значение несущей способности буронабивной сваи рассчитывают по формуле, учитывающей несколько параметров

Влияние климатических факторов

Согласно рекомендации СНиП, забивка свай во влажных почвах осуществляется, если температура окружающей среды не холоднее -10 градусов Цельсия. При изменении температуры в меньшую сторону от указанного значения необходимо выполнить комплекс мероприятий, направленных на защиту свежего состава от замерзания, а также обеспечить возможность бесперебойной работы бурильного оборудования. Особые требования к выполнению строительных мероприятий должны указываться организацией-проектировщиком работ в специальном проекте.

Специфика армирования

Согласно требованиям строительных норм и правил, обустраивая свайные фундаменты, необходимо обеспечить их усиление путем армирования. Для этого применяется прочная стальная арматура, объединенная единым каркасом с помощью сварки.

Пространственная конструкция состоит из прутков арматуры, с равным интервалом расположенных по периметру окружности. При диаметре стержней более 1,8 см каркас должен включать более шести продольных прутьев, расстояние между которыми не должно быть меньше 400 миллиметров. Предпочтительно применять для продольных прутков арматурную сталь АIII.

Их количество зависит от диаметра стойки и может составлять от 3 до 8 штукИх количество зависит от диаметра стойки и может составлять от 3 до 8 штук

Армирование свай выполняют вертикальными стержнями периодического профиля (диаметр 12-14 мм)

Защита стального арматурного каркаса от разрушающего воздействия коррозии достигается соблюдением защитного бетонного слоя. Обеспечение неподвижности каркаса усиления обеспечивается пластмассовыми трубками, размеры которых составляют:

  • диаметр – 9 см;
  • длина – 7 см.

Требования к зоне работ

До того, как начать буронабивные мероприятия, необходимо выполнить комплекс работ, направленный на подготовку строительной площадки:

  • Установить ограждения в зоне выполнения работ согласно строительному генеральному плану.
  • Отключить, перенести из зоны мероприятий все коммуникации, находящиеся выше и ниже нулевой отметки.
  • Освободить место работ от временных сооружений, ненужных построек.
  • Удалить и сложить в определенных местах растительную поверхность почвы.
  • В соответствии с указанными в проекте отметками следует обеспечить плоскостность основания.
  • Осуществить водоотвод или водопонижение.
  • Поверхность площадки засыпать щебеночной подушкой, поверх которой необходимо уложить плиты.
  • Площадь зоны строительства должна позволять размещение комплекта технологических устройств (буровой установки, бетонного насоса, оборудования для доставки и разгрузки бетона) и иметь удобные подъездные пути.

При расчете свай всех видов по прочности материала сваю следует рассматривать как стержень, жестко защемленный в грунтеПри расчете свай всех видов по прочности материала сваю следует рассматривать как стержень, жестко защемленный в грунте

Расчеты конструкций свай всех видов следует производить на воздействие нагрузок, передаваемых на них от здания или сооружения

Буронабивные мероприятия производят после контроля координат подготовленной площадки и проверки расположения осей опор будущего фундамента.

Строительные нормы и правила предусматривают использование автомобильных смесителей бетона и самоходного оборудования для его транспортировки. Допускается доставка предварительно смешанных сухих компонентов в зону работ, добавление воды перед началом бетонирования.

Особенности технологии

Как, согласно ГОСТ, устроены буронабивные опоры? Какие этапы предусматривает процесс их изготовления? Обобщенно выполнение опоры предусматривает два основных этапа:

  • непосредственно бурение в грунте полости;
  • заполнение полученной скважины бетонным раствором с предварительным монтажом каркаса усиления.

Имеется особенность, предусмотренная строительными нормами. Скважина и раствор имеют ограниченный период использования. С течением времени их качество падает. Полость вместе с раствором становятся непригодными для дальнейших работ. Поэтому ГОСТ регламентирует ограниченный 8 часами период между завершением бурильных работ и бетонированием.

Расчетные значения характеристик материалов свай и свайных ростверков следует принимать в соответствии с требованиями СНиПРасчетные значения характеристик материалов свай и свайных ростверков следует принимать в соответствии с требованиями СНиП

Все расчеты свай, свайных фундаментов и их оснований следует выполнять с использованием расчетных значений характеристик материалов и грунтов

Опорные конструкции представляют собой предварительно пробуренные, согласно проекту, скважины с установленным арматурным каркасом. До заливки бетонного раствора полость уплотняется, герметизируется раствором глины, который предотвращает обвалы грунта, а затем объем заполняется бетонным составом. Допускается использование обсадных труб или заливка бетона непосредственно в скважину.

Изготовление и монтаж опор производятся по предусмотренному стандартами алгоритму:

  • Вначале ударная установка или бурильная машина устанавливается на точку бурения.
  • Производятся бурильные мероприятия, формирующие скважину с определенными размерами (диаметром, глубиной). Расширение внизу основания конструкции позволяет увеличить несущую способность будущей опоры.
  • Вводится раствор глины, который гидростатически воздействует на стенки, исключает выкрашивание поверхности скважины.
  • Продукты бурения увлекаются потоком жидкости, извлекаются на нулевую отметку.
  • С использованием грузоподъемного оборудования в подготовленную скважину помещается каркас усиления, который может размещаться по всей высоте сваи или у поверхности. Всё зависит от предусмотренного проектом усилия.
  • Производится фиксация арматурного каркаса неметаллическими упорами, обеспечивающими защитный слой.
  • Полость заполняется бетонным раствором, доставленным авто-бетоносмесителем. Процесс бетонирования, согласно СНиП, не должен превышать трех часов.
  • Специальная установка извлекает обсадные элементы.
  • Бурильно-крановое оборудование перемещается в следующую точку выполнения работ согласно со схемой, приведенной в стандарте.

Контроль качества

Все материалы, поставляемые в зону работ, подлежат входному контролю. Это касается обсадных труб, арматурных каркасов усиления и другого сырья. Осуществляется визуальный контроль, а также проверяется информация, указанная в сопроводительной документации, паспортах, сертификатах. Бетонная смесь, доставляемая с предприятия-изготовителя, контролируется визуально и по документам бетонного завода.

При выполнении буронабивных мероприятий на всех стадиях осуществляется приемочный и операционный контроль. Будущие свайные фундаменты проверяются на соответствие координат разбивочных осей. После завершения бурильных мероприятий сопоставляют фактические размеры с параметрами, предусмотренными проектом.

Материал статьи охватывает общие положения строительных норм и правил, неукоснительное соблюдение которых гарантирует качественное выполнение работ. Руководствуясь СНиП, забивка свай будет выполнена на высоком техническом уровне.

Филонцев Виктор НиколаевичФилонцев Виктор Николаевич

На сайте: Автор и редактор статей на сайте pobetony.ru
Образование и опыт работы: Высшее техническое образование. Опыт работы на различных производствах и стройках – 12 лет, из них 8 лет – за рубежом.
Другие умения и навыки: Имеет 4-ю группу допуска по электробезопасности. Выполнение расчетов с использованием больших массивов данных.
Текущая занятость: Последние 4 года выступает в роли независимого консультанта в ряде строительных компаний.

Буронабивные сваи диаметром 300 — ограничения и количество

  • Монтаж фундамента
    • Выбор типа
    • Из блоков
    • Ленточный
    • Плитный
    • Свайный
    • Столбчатый
  • Устройство
    • Армирование
    • Гидроизоляция
    • После установки
    • Ремонт
    • Смеси и материалы
    • Устройство
    • Устройство опалубки
    • Утепление
  • Цоколь
    • Какой выбрать
    • Отделка
    • Устройство
  • Сваи
    • Виды
    • Инструмент
    • Работы
    • Устройство
  • Расчет

Поиск

Портал о фундаментах Портал о фундаментахФундаменты от А до Я.

  • Монтаж фундамента
    • ВсеВыбор типаИз блоковЛенточныйПлитныйСвайныйСтолбчатый

      Фундамент под металлообрабатывающий станок

      Устройство фундамента из блоков ФБС

      Заливка фундамента под дом

      Характеристики ленточного фундамента

  • Устройство
    • ВсеАрмированиеГидроизоляцияПосле установкиРемонтСмеси и материалыУстройствоУстройство опалубкиУтепление

      Устранение трещин в стенах фундамента

      Как армировать ростверк

      Необходимость устройства опалубки

      Как сделать гидроизоляцию цоколя

  • Цоколь
    • ВсеКакой выбратьОтделкаУстройство

Буронабивные сваи. Технология устройства

Буронабивные сваи. Технология устройства

Буронабивные сваи создают защиту для фундамента, предохраняя его от движения почвы. Это столбы из железобетона, опирающиеся основанием на несущую почву. Располагают их ниже уровня глубины промерзания земли. Иногда их комбинируют с монолитной плитой или ростверком.

Применение буронабивных свай:

• здания из каркаса;
• сооружения из дерева;
• сооружения кирпичные или газобетонные;
• заборы;
• летние беседки.

Типы почвы для которых подходят буронабивные сваи:

• песчаные;
• супесь;
• глинистые грунты;
• торфяники.

Буронабивные сваи: технология строительства.

1. Для начала нужно сделать скважину (глубина от 1.5 м и более).
2. Теперь размещаем каркас из арматуры.
3. Делаем опалубку из обсадных труб, с их помощью мы сможем правильно заполнить скважину бетоном.
4. Теперь необходимо с помощью обрезки подогнать все буронабивные сваи до одинакового уровня.
5. Заливаем сваи бетоном.

Функции обсадных труб

При помощи обсадных труб мы:
1. перекроем горизонты плывунных почв;
2. обеспечим безопасность работ;
3. параметры буровой скважины находятся под контролем;
4. скважина качественно заполняется бетоном.

Буронабивные сваи. Технология устройства

Главные преимущества свай такого типа:

1. Фундамент из таких свай обойдется дешевле, в сравнении с другими типами.
2. Устройство буронабивных свай такое же надежное, как и монолитна плита.
3. Сваи способны выдерживать нагрузки до 10 тонн.
4. Такой фундамент можно применять практически на всех видах грунта.
5. Срок эксплуатации длиться более 100 лет.
6. Не подвергаются коррозии.
7. Построить такой фундамент можно очень быстро, достаточно двух – трех дней.
8. Стройка возможна при любых температурах.
9. Не нужна тяжелая техника.
10. При таком фундаменте можно поднять первый этаж на 1 метр.

Основная характеристика буронабивной сваи – несущая способность.

При возведении свайного фундамента, нужно обязательно учитывать несущую способность каждой опоры, от этого зависит количество расходуемого материала и количество столбов для крепкой опоры сооружения.

Схема фундамента из буронабивных свай

Размеры столба влияют на несущую способность. Например, свая Ø 300 мм выдерживает нагрузку 1.7 тонн, а свая Ø 500 мм выдержит 5 тонн. Отсюда можно сделать вывод, что при небольшой разнице в размере сваи, нагрузка сильно отличается. Для надежного фундамента из буронабивных свай нужно правильно рассчитать опоры. Также от этой характеристики зависит колличество свай и нужного материала для их изготовления.

Рассчитываем несущую способность свай

Эта характеристика определяет вертикальную нагрузку на сваи, зависит от сопротивления грунтов и самого материала, из которого делают сваи. Основным значением берут наименьшее.

Несущую способность рассчитывают по формуле:
P=ko*Rn*F+U*kp*Fin*Li,
• Р – несущая способность сваи;
• ko – коэффициент однородности подстилающего грунта;
• Rn – нормативное сопротивление грунта основанию опоры;
• F -площадь свайного основания, см²;
• U – периметр основания, м;
• kp – коэффициент рабочих условий;
• Fin -нормативное сопротивление грунта боковым граням столба;
• Li – толщина грунта, который соприкасается с боковой поверхностью столба, м.
Нормативные сопротивления грунтов и коэффициенты можно найти в приложении СНиП 2.02.03-85 «Свайные фундаменты».

Буронабивные сваи. Технология устройства

Если подстилающая почва неоднородная и включает в себя много слоев, то нормативное сопротивление почвы боковым граням определяется для каждого слоя отдельно и складывается. Также в нагрузку при расчете включайте вес буронабивных свай и ростверка.
Теперь нужно определить общее количество всех буронабивных свай для фундамента. Учитывайте, что максимальное расстояние между соседними сваями должны быть 2 м, а минимальное – 3 Ø скважины.
После вычисления количества и размеров столбов, нужно сделать их заливку.

Видео по теме:

технология устройства фундамента с ростверком своими руками

Для прочного и функционального фундамента часто используются буронабивные сваи. Это вид свайных оснований, когда бетон заливается в сделанную в грунте скважину, в которой размещен армирующий каркас. На сыпучих грунтах для укрепления применяются специальные опалубки или обсадная труба. Эта технология подходит для строительства загородных домов, промышленных объектов. Ее используют для работ в городской черте, где окружающим зданиям противопоказана вибрация.

Буронабивные сваи

Буронабивные сваи

Описание и применение

Технология буронабивного фундамента из свай со связывающим ростверком, описывается в строительных правилах СП 50-102-2003. Несколько основных методик устройства буронабивных фундаментов:

  • Использование непрерывного шнека (НПШ) с одновременной подачей бетонной смеси снизу вверх скважины через технологический клапан.
  • Защита от разрушения стенок отверстия в грунте путем создания противодавления бетонитового раствора.
  • Применение обсадных труб погружаемых и извлекаемых вибропогружателями или «дрейтеллером» (вращающим погружателем).

По каждой из технологий бетон подается в скважину, с заранее установленным в ней армированием и схватывается непосредственно в грунте. На сыпучих, подвижных, влажных грунтах, при частном строительстве, обязательно применяются обсадные трубы, удерживающие бетон в скважине. После затвердевания бетонной смеси, трубы аккуратно извлекаются или оставляются в качестве несъемной опалубки.

Буронабивные сваи применяются, когда затруднено использование других типов свайных фундаментов:

  • в городе, где шум при забивке может оказать негативное влияние на окружающих жильцов;
  • на заболоченных, слабых грунтах, кода требуется добраться до жестких слоев;
  • при возведении сооружений на площадках с крутым уклоном;
  • в промышленном строительстве.

Буронабивной фундамент обязательно делается с ростверком, представляющим собой раму из армированного бетонного монолита, соединяющую оголовки свай. Это делается для равномерного распределения давления на каждый элемент основания. Получается прочный ленточный фундамент с буронабивными сваями, который может применяться на сложных грунтах.

Буронабивной фундамент в разрезе

Буронабивной фундамент в разрезе

Свайный фундмент с ленточным ростверком

Свайный фундмент с ленточным ростверком

Классификация

Буронабивной фундамент классифицируется в зависимости от технологии изготовления. На глинистых и других плотных грунтах используется методика НПШ (непрерывный полый шнек). Шнек представляет собой полую трубу, закрытую обратным клапаном, который не позволяет изымаемому грунту попадать в нее. К трубе крепится прочная спираль, поднимающая грунт на поверхность наподобие классического бура. При достижении нужной глубины в полость трубы подается под высоким давлением бетон. Он открывает клапан, постепенно заполняя скважину по мере поднимания шнека наверх. Чтобы сделать буронабивную сваю прочнее, в бетон, мощным вибратором, вводится армирующий каркас. После заливки свая оставляется до тех пор, пока раствор не наберет нужную прочность.

Метод непрерывного шнека

Метод непрерывного шнека

Вторая методика – устройство буронабивных свай с обсадной трубой, эта технология применяется на зыбких грунтах. Труба защищает скважины от обрушения при введении в нее армирующей конструкции или избыточного давления на залитый раствор. Для этого бурится скважина по диаметру трубы, которую помещают в нее при помощи вращения, вдавливания или просто устанавливают там. После этого бур извлекается из грунта, в скважину устанавливается арматура так, чтобы образовался защитный слой бетона около 60 мм. Затем заливается раствор с одновременным уплотнением, а обсадная труба постепенно извлекается из скважины.

Особенности технологии

В строительстве буронабивной фундамент становится все популярнее. Это объясняется преимуществами этой технологии, позволяющей возводить сооружения практически на любых грунтах. К особенностям буронабивных свай относят:

  • Широкая область применения, возможность использования как на плотных, так и на зыбких грунтах (пучинистых или сыпучих почвах, возле водоемов).
  • Быстрое возведение фундамента. Технология с применением буронабивных свай позволяют сделать все работы быстрее, чем заливка ленточного основания или шведской плиты.
  • Построенный с соблюдением всех нормативов, фундамент на буронабивных сваях прослужит не менее 150 лет.
  • Простота конструкции за счет сравнительно небольшого объема земляных работ, достаточно пробурить скважины.
  • Возможность самостоятельного выбора диаметра и высоты опор, типа армирования, в зависимости от свойств грунта и конструктивных особенностей здания.
  • Повышенная несущая способность. Такой фундамент может выдерживать вес многоэтажных, промышленных здания, массивных железобетонных сооружений.

Диаметр сваи подбирается согласно действующим СНиП после геодезических изысканий, учета климатических и геологических особенностей. Непосредственно при проектировании рассчитывается масса здания, количество опор и определяется тип грунта. Информацию о несущей способности буронабивных свай на разных грунтах можно найти в таблице:

Несущая способность буронабивных свай на разных грунтахНесущая способность буронабивных свай на разных грунтах

Технология буронабивного фундамента имеет недостатки, к которым относят:

  • использование тяжелой техники для бурения, установки обсадных труб, армирования на крупных строительных объектах;
  • относительная сложность технологических процессов;
  • необходимость расчетов.

Устройство буронабивного фундамента

Этот тип основания применяется не только в промышленном, но и частном строительстве. Возведение фундамента на буронабивных сваях требует спецтехники, но это быстрее и дешевле, чем заливка популярного ленточного основания. Важная особенность буронабивного фундамента – возможность его самостоятельного устройства с применением ручных или мотобуров.

Перед началом работ необходимо приготовить инструмент и материалы:

  • рулетка, моток шнура, набор колышков и молоток для разметки;
  • бур для скважин – ручной, с электрическим приводом или на ДВС;
  • опалубка из рубероида, пластика, железобетона или асбестоцемента, чтобы их можно было оставить в скважине, для промышленного строительства понадобятся съемные обсадные трубы;
  • арматура для опор и ростверка;
  • инструмент для приготовления бетонного раствора, цемент, щебень, песок.

Необходимые расчеты

Чтобы правильно провести расчет количества буронабивных свай необходимо определить общую массу здания (вес стенок, плит перекрытий, коммуникаций, мебели и т.д.). Учитывая, что сваи изготавливаются из бетона М300, со стандартным армированием, несущую способность одной буронабивной сваи можно найти по таблице:

 Диаметр сваи, ммПлощадь опоры, см²Несущая способность, кгОбъем бетона, м³Количество вертикальных прутков арматуры, штРасход арматуры, пог. м
15017710620,035437
20031418840,062849
25049129460,0982410
30070742420,1414614
400125675360,2512818

При помощи портативных буров можно подготовить скважины диаметром до 200 мм, поэтому они чаще всего применяются в частном строительстве.

Чтобы рассчитать заглубление опоры, необходимо узнать глубину промерзания грунта в местности и прибавить 20 сантиметров. Например, если промерзание достигает 1,3 м, то буронабивные сваи погружаются на глубину 1,5 м. На пучинистых, сыпучих, болотистых и подвижных грунтах потребуются дополнительные исследования, а при заглублении нужно будет добираться до пластов с твердой породой.

Для расчета количества свай потребуется массу здания поделить на несущую способность одной опоры, а полученный результат умножить на коэффициент погрешности 1,2. Он учитывает возможные неточности при определении массы ростверка, мебели, снеговой нагрузки.

Подготовка и разметка

Планировка фундамента начинается со схемы свайного поля, на которой указываются расстановка буронабивных опор. Для этого на углах участка, чтобы убедиться, что он прямоугольный, нужно замерить диагонали, они должны быть равными.

Первые четыре буронабивные сваи устанавливаются по углам, остальные должны быть равномерно распределены под несущими стенками. В местах, где будут делаться скважины, забиваются колышки.

Расстояние между буронабивными сваями с ростверком по технологии не должно превышать 2 м, но не менее 3 свайных диаметров, чтобы не нарушить структуру грунта.

Монтаж

После подготовительных этапов можно приступать к монтажу буронабивных свай своими руками. Ручным, механическим или электрическим буром проделываем скважины на заданную глубину, согласно разметке.

В скважины опускается заранее изготовленные арматурные каркасы, устанавливаются обсадные трубы. Они могут быть из металла, пластика, рубероида, асбеста, железобетона. В частном строительстве они служат несъемной опалубкой для будущих буронабивных свай. Главное условие – точная вертикальная установка по уровню.

Пространство между обсадными трубами и скважиной заполняется грунтом, которые периодически утрамбовывается. При этом требуется контролировать вертикальность трубы. Высоту свай проверяют гидравлическим или лазерным уровнем, чтобы обвязка была горизонтальной. Если трубы выше, их срезают, арматурный каркас остается как основа для связывания ростверка.

В подготовленную опалубку заливается бетонный раствор марки М300, который уплотняется ручной трамбовкой или вибратором. Залитые буронабивные сваи оставляются до полного схватывания цемента в течение 2-3 недель.

Заливка ростверка

Чтобы достигнуть максимальной прочности буронабивной фундамент соединяется ростверком – железобетонной лентой или рамкой. Он равномерно распределяет давления на все сваи. Устройство ростверка схоже с технологией строительства стандартного ленточного фундамента. Единственное отличие – его нижняя часть находится на весу, не упираясь и не заглубляясь в грунт. Основой ростверка служат оголовки свай, поднятые над землей на проектную высоту.

Ширина ростверка равняется толщине несущих стен, высота – для деревянных, пенобетонных стен равна ширине. Для каменных и кирпичных зданий – на 50% больше ширины. Ростверк заливается в несколько этапов:

  • монтируется опалубка в виде короба, в которой проделываются отверстия для свай и будущих инженерных коммуникаций;
  • монолитный ростверк обязательно армируется по требованиям для железобетонных конструкций, каркас связывается с выступающей арматурой буронабивных опор;
  • в опалубку заливается бетонная смесь, которая должна полностью схватиться, затем опалубка демонтируется;
  • производится гидроизоляция поверхности лентой из рубероида, сложенной в два слоя, либо обмазочными составами.

Советы профессионалов

Несмотря на то, что буронабивной фундамент можно сделать самостоятельно, при возведении существует много моментов, известных только опытным строителям, которые делятся своим опытом. Чтобы избежать ошибок при строительстве, обратите внимание на такие моменты:

  • тщательно изучите тип грунта, для чего лучше выполнить геодезическую разведку, учитывая полученную информацию при подборе диаметра и глубины установки свай;
  • для частного строительства не применяйте опоры диаметром более 200 мм, поскольку для их монтажа потребуется спецтехника, что сделает фундамент дороже;
  • при заливке обсадных труб, часть арматуры должна выступать на высоту будущего ростверка для придания ему дополнительной прочности;
  • заливку ростверка можно производить только после полного схватывания раствора в буронабивных сваях;
  • расстояние между нижней частью ростверка и поверхностью грунта не должно быть меньше 150 мм, чтобы он не деформировался при вспучивании.

Устройство фундаментов из буронабивных свай – это технология набирающая популярность. Она позволяет создать прочную и недорогую основу как для частных домов, легких сооружений, так и промышленных объектов зданий на любых почвах. Затраты на устройство такого фундамента ниже, чем на строительство классической ленточной основы, заглубляемой ниже уровня промерзания грунта, в среднем на 40%. Показатели прочности и долговечности при этом остаются сопоставимыми.

ГОСТ сваи буронабивные, СНиП на буронабивные сваи

На этой странице мы публикуем все межгосударственные стандарты (ГОСТ) на устройство буронабивных свай, а также документацию по строительным нормам и правилам (СНиП), которыми пользуемся в своей работе.

Специалисты строительной компании ООО «ПСК Основания и Фундаменты» уже более 20 лет занимается устройством фундаментов из буронабивных свай. По всем вопросам звоните 8 (495) 133-87-71, 8 (495) 532-51-90

 

Нужен фундамент из буронабивных свай? обращайтесь в нашу компанию — рассчитаем и установим!

Опыт работы — более 20 лет.

 

ГОСТ и СНиП по свайным фундаментам

СНиП 2.02.03-85. Свайные фундаменты. Смотреть

Настоящие нормы распространяются на про­ектирование свайных фундаментов вновь стро­ящихся и реконструируемых зданий и сооруже­ний.

 

СП 50-102-2003. Проектирование и устройство свайных фундаментов. Смотреть

Свод  правил  по  проектированию  и  устройству  свайных  фундаментов  разработан  в  развитие  обязательных  положений  и  требований СНиП 2.02.03-85 и СНиП 3.02.01-87. Свод правил устанавливает требования к проектированию и устройству различных типов свай в различных инженерно-геологических условиях и для различных видов строительства.

 

ГОСТ 19804-2012. Сваи железобетонные заводского изготовления. Общие технические условия. Смотреть

Настоящий  стандарт  устанавливает  общие  требования  к железобетонным  сваям  заводского изготовления. Настоящий  стандарт  предназначен  для  разработки  нормативных документов  и  технической документации  на  конкретные виды изделий

ГОСТ на армокаркасы

ГОСТ 34028-2016. Прокат арматурный для железобетонных конструкций. Технические условия. Смотреть

Настоящий стандарт  распространяется  на  арматурный  прокат  гладкого и  периодического профилей классов А240, А400, А500 и А600. предназначенный для применения при армировании сборных железобетонных конструкций  и  при  возведении  монолитного железобетона,  а  также  на  арматурный прокат периодического профиля классов АпбОО, А800 и А1000. предназначенный для применения при армировании предварительно напряженных железобетонных конструкций.

 

ГОСТ ГОСТ 535-2005. Прокат сортовой и фасонный из стали углеродистой обыкновенного качества. Общие технические условия. Смотреть

Настоящий стандарт распространяется на горячекатаный сортовой и фасонный прокат общего и специального назначений из углеродистой стали обыкновенного качества. 

ГОСТ по использованию бетонной смеси

ГОСТ 18105-2010. Бетоны. Правила контроля и оценки прочности. Смотреть

Настоящий стандарт распространяется на все виды бетонов, для которых нормируется прочность, и  устанавливает  правила  контроля  и  оценки  прочности  бетонной  смеси,  готовой  к  применению (далее — БСГ),  бетона  монолитных,  сборно-монолитных  и  сборных  бетонных  и  железобетонных конструкций при проведении производственного контроля прочности бетона. Правила  настоящего стандарта могут быть использованы  при проведении обследований бетонных и железобетонных конструкций, а также при экспертной оценке качества бетонных и железобетонных конструкций.

 

ГОСТ 10060-2012. Бетоны. Методы определения морозостойкости. Смотреть

Настоящий  стандарт  распространяется  на  тяжелые,  мелкозернистые, легкие и  плотные силикатные бетоны  (далее  — бетоны)  и устанавливает  базовые  и  ускоренные  методы  определения  морозостойкости. 

 

ГОСТ 26633-2012. Бетоны тяжелые и мелкозернистые. Технические условия. Смотреть

Настоящий стандарт распространяется на тяжелые и мелкозернистые бетоны на цементных вяжущих (далее — бетоны),  применяемые во всех областях строительства,  и устанавливает технические требования к бетонам, правила их приемки, методы испытаний. Стандарт не распространяется на крупнопористые, химически стойкие, жаростойкие и радиационно-защитные бетоны. 

 

ГОСТ 7473-2010. Смеси бетонные. Технические условия. Смотреть

Настоящий стандарт  распространяется  на готовые для  применения  бетонные смеси  тяжелых, мелкозернистых и легких бетонов на цементных вяжущих (далее — бетонные смеси), отпускаемые потребителю для возведения монолитных и сборно-монолитных конструкций или используемые на предприятиях для изготовления изделий и сборных бетонных и железобетонных конструкций. Настоящий стандарт содержит требования к технологическим характеристикам бетонных смесей, процедурам контроля их приготовления, оценке соответствия показателей их качества, а также количеству бетонной смеси, отпускаемой потребителю. 

 

ГОСТ 12730.0-78. Бетоны. Общие требования к методам определения плотности, влажности, водопоглощения, пористости и водонепроницаемости. Смотреть

Настоящий стандарт распространяется на бетоны всех видов, применяемые в промышленном,  энергетическом,  транспортном,  водохозяйственном,  сельскохозяйственном, жилищно-гражданском и других видах строительства. Стандарт  устанавливает  общие  требования  к  методам  определения  плотности  (объемной массы), влажности, водопоглощения,  пористости и водонепроницаемости путем объемно-весовых испытаний образцов. 

ГОСТ на испытания свай

ГОСТ 5686-94. Грунты. Методы полевых испытаний сваями. Смотреть

Настоящий стандарт распространяется на методы полевых испытаний грунтов сваями  (натурными, эталонными,  сваями — зондами ), проводимых при инженерных изысканиях для строительства, а также на контрольные испытания свай при строительстве. 

 

Кроме буронабивных мы изготавливаем буроинъекционные, буросекущие и бурокасательные сваи

Все работы — под ключ!

По желанию заказчика мы полностью выполним все работы под ключ, начиная с геологических исследований и заканчивая устройством ростверка.

Для устройства буронабивных свай обращайтесь к нам в ООО «ПСК Основания и Фундаменты». Наши специалисты с большим опытом работы помогут разработать и построить фундамент на буронабивных сваях любой сложности.

Оставьте заявку на консультацию технического специалиста

Узнайте сколько вы сможете сэкономить с нами

Несущая способность буронабивной сваи: таблица и расчет

  • Монтаж фундамента
    • Выбор типа
    • Из блоков
    • Ленточный
    • Плитный
    • Свайный
    • Столбчатый
  • Устройство
    • Армирование
    • Гидроизоляция
    • После установки
    • Ремонт
    • Смеси и материалы
    • Устройство
    • Устройство опалубки
    • Утепление
  • Цоколь
    • Какой выбрать
    • Отделка
    • Устройство
  • Сваи
    • Виды
    • Инструмент
    • Работы
    • Устройство
  • Расчет

Поиск

Портал о фундаментах Портал о фундаментахФундаменты от А до Я.

  • Монтаж фундамента
    • ВсеВыбор типаИз блоковЛенточныйПлитныйСвайныйСтолбчатый

      Фундамент под металлообрабатывающий станок

      Устройство фундамента из блоков ФБС

      Заливка фундамента под дом

      Характеристики ленточного фундамента

  • Устройство
    • ВсеАрмированиеГидроизоляцияПосле установкиРемонтСмеси и материалыУстройствоУстройство опалубкиУтепление

      Устранение трещин в стенах фундамента

      Как армировать ростверк

      Необходимость устройства опалубки

      Как сделать гидроизоляцию цоколя

  • Цоколь
    • ВсеКакой выбратьОтделкаУстройство

Система обнаружения буронабивных свай инженерных сооружений

Тест качества

свайных отверстий

Строительная бетонная система диаметра и наклона буронабивных свай

Эта система в основном используется для проверки качества порообразования буронабивных свай в инженерных сооружениях, таких как здания, мосты, морские мосты, железные дороги, эстакады и др. отличные постройки. В системе используются компьютерные технологии и соответствующее собственное программное обеспечение, обработка данных испытаний и кривой в реальном времени позволяет быстро отображать отчеты о качестве скважин.Системная политика точна, проста в использовании, высокая эффективность, это предпочтительное оборудование для определения качества свайных отверстий.

1. Он принимает новейшую полностью цифровую систему, которая основана на системах предыдущего поколения, технические показатели полностью обновлены. Комбинированный инклинометр, штангенциркуль, более высокая точность и практичность.

2. Тест точный, простой в использовании, высокая эффективность.

3. Система управления использует IPC в качестве основного корпуса, а также защиту от помех, высокую производительность, простоту в использовании.

Контакт

Запросите информацию ниже, я отвечу вам в ближайшее время

Имя: Vivienne

Skype: viviennecq

Электронная почта: gold04 at hy-industry. com

Tel / whatsapp / wechat: + 86-15123029803

Или заполните приведенную ниже таблицу, чтобы запросить

,

Понимание измерений в PyTorch | Боян Бараков

Однако, как я уже сказал, более важной проблемой было направление каждого измерения. Вот что я имею в виду. Когда мы описываем форму двумерного тензора, мы говорим, что он содержит около строк, и около столбцов. Итак, для тензора 2×3 у нас 2 строки и 3 столбца:

 >> x = torch.tensor ([
[1, 2, 3],
[4, 5, 6]
]) >> x.shapetorch.Size ([2, 3])

Мы указываем сначала строки (2 строки), а затем столбцы (3 столбца), верно? Это привело меня к выводу, что первое измерение ( dim = 0 ) остается для строк, а второе ( dim = 1 ) для столбцов.Исходя из того, что размер dim = 0 означает построчный, я ожидал, что torch.sum (x, dim = 0) даст тензор 1×2 ( 1 + 2 + 3 и 4 + 5 + 6 для исхода тензора [6, 15] ). Но оказалось, что у меня что-то другое: тензор 1×3 .

 >> torch.sum (x, dim = 0) tensor ([5, 7, 9]) 

Я был удивлен, увидев, что реальность оказалась противоположной тому, что я ожидал, потому что я наконец получил результат тензор [6, 15] , но при передаче параметра dim = 1 :

 >> torch.sum (x, dim = 1) тензор ([6, 15]) 

Так почему это так? Я обнаружил статью Аэрина Кима, в которой разбирается та же путаница, но для матриц NumPy, где мы передаем второй параметр, называемый осью , . Сумма NumPy почти идентична той, что у нас есть в PyTorch, за исключением того, что dim в PyTorch называется axis в NumPy:

numpy.sum (a, axis = None, dtype = None, out = None, keepdims = False )

Ключом к пониманию того, как dim в PyTorch и ось в NumPy работают, был этот абзац из статьи Aerin:

Способ понять « ось » числовой суммы состоит в том, что она схлопывается указанной оси.Таким образом, когда он сворачивает ось 0 (строку), он становится всего одной строкой (суммируется по столбцам).

Она очень хорошо объясняет функционирование параметра оси на numpy.sum. Однако становится сложнее, когда мы вводим третье измерение. Когда мы посмотрим на форму трехмерного тензора, мы заметим, что новое измерение добавляется в начало и занимает первую позицию ( жирным шрифтом ниже), т.е. третье измерение становится dim = 0 .

 >> y = резак.тензор ([
[
[1, 2, 3],
[4, 5, 6]
],
[
[1, 2, 3],
[4, 5, 6]
],
[
] [1, 2, 3],
[4, 5, 6]
]
]) >> y.shapetorch.Size ([ 3 , 2, 3])

Да, это довольно запутанно. Вот почему я думаю, что некоторые базовые визуализации процесса суммирования по разным измерениям в значительной степени способствуют лучшему пониманию.

Первое измерение ( dim = 0 ) этого трехмерного тензора является наивысшим и содержит 3 двумерных тензора.Итак, чтобы просуммировать по нему, мы должны свернуть его 3 элемента друг над другом:

 >> torch.sum (y, dim = 0) tensor ([[3, 6, 9], 
[12, 15, 18 ]])

Вот как это работает:

Для второго измерения ( dim = 1 ) мы должны свернуть строки:

 >> torch.sum (y, dim = 1) tensor ([[5, 7, 9], 
[5, 7, 9],
[5, 7, 9]])

И, наконец, третье измерение обрушивается на столбцы:

 >> torch.sum (y, dim = 2 ) tenor ([[6, 15], 
[6, 15],
[6, 15]])

Если вы похожи на меня, недавно начали изучать PyTorch или NumPy, я надеюсь, что эти базовые анимированные примеры помогут чтобы лучше понять, как работают размеры, не только для суммы , но и для других методов.

Спасибо за чтение!

Ссылки:

[1] А. Ким, Numpy Sum Axis Intuition

.Буронабивная штанга

— купить на Alibaba.com

US $ 10,000.00–100 000 долларов США

/ Устанавливать
| 1 компл. / Компл. (Мин. Заказ)

Перевозка:
Служба поддержки
Морские перевозки

,

Петрозаводскмаш-Литейный завод / АЭМ — Технология

Плавильный цех оборудован индукционными печами промышленной частоты с кислотной футеровкой: агрегат ЛФД-25 с 4 тиглями, каждый по 25 т чугуна, и два агрегата ЛФД-8 с 3 тиглями, каждый по 8 т чугуна. , Одновременно могут работать 3 25-тонных тигля и 4 8-тонных тигля. Печи производства ASEA.

В 2007 году цех был реконструирован, в результате чего был оборудован новый плавильный комплекс, состоящий из двух среднечастотных индукционных печей, каждая емкостью 25 т чугуна.Печи производства INDUCTOTHERM (Англия).

В наличии ковши от 0,5т до 75т. Имеются два крана для разливки грузоподъемностью до 140т. Краны могут работать одновременно.

Выплавляют чугун с чешуйчатым графитом марок СЧ10 — СЧ35 ГОСТ 1412-85 и их аналоги EN-GJL-150 — EN-GJL-350 EN 1561, чугун с шаровидным графитом марок ВЧ40 — ВЧ70 ГОСТ 7293-85 и их аналоги EN-GJS-400-15 — EN-GJS-700-2 EN 1563.Кроме того, доступны высоколегированный (до 34% Cr, 22% Ni плюс Мо, Si) чугун, жаропрочный и износостойкий чугун и немагнитный чугун типов Ni-Hard и Ni-Resist.

В плавильном цехе осуществляется конвейерная разливка, разливка крупногабаритного и мелкого фасонного литья, разливка отливок с водяной рубашкой.

Мастерская выкройки


В выкройном цехе изготавливаются выкройки из дерева и пенополистирола, а также фурнитура из металла.

Цех оснащен 5-координатным фрезерным центром Belotti PNC, который обрабатывает деревянные и пластмассовые узоры сложной формы размером до 2,5 х 4,5 м с высокой точностью. Группа компьютерной поддержки, использующая трехмерную твердотельную и поверхностную CAD-систему вместе с 5-координатными программами обработки, поддерживает работу центра.

Доставка


Имеем возможность отправки произведенных товаров наземным и водным транспортом.

Доставка наземным транспортом

Имеем возможность отгружать грузы автомобильным и железнодорожным транспортом ..

Доставка морем

Рядом с литейным заводом находится морской порт на Онежском озере.

,