Регулировка температуры: Регулятор температуры: виды, принцип работы

Содержание

Регулятор температуры: виды, принцип работы

Главная задача отопительной системы — создание для жильцов максимально комфортных условий, поддержание оптимальной температуры в помещениях. Достичь цели можно несколькими способами, однако самый удобный и распространенный всего один. Это использование специальных приборов — терморегуляторов. Такие устройства работают не только в системах отопления, они являются важным элементами холодильников, а также кондиционеров. Поскольку не у всех есть возможность регулировать температуру и скорость подачи теплоносителя, можно модернизировать систему, оснастив ее этим прибором. Однако прежде чем приобретать устройство будущим хозяевам не мешает понять принцип работы регулятора температуры, узнать о конструкциях максимум информации.

Знакомство с устройствами

Первые комнатные регуляторы температуры были созданы в Дании еще в прошлом веке, после Второй Мировой — в конце х. Время шло, простейший прибор модернизировался, появлялись новые его разновидности. В наше время ассортимент терморегуляторов уже довольно широк. Можно купить модели для централизованных систем отопления, для котлов, работающих автономно, для теплых полов и инфракрасных излучателей.

Второе название этого небольшого комнатного прибора — радиаторный термостат. Это специальный механизм, который встраивают в подающую трубу. Терморегулятор дает возможность практические мгновенно менять скорость подачи теплоносителя, тем самым контролируя температуру в помещении. Погрешность данных устройств обычно незначительна, поэтому все они достаточно эффективны.

Подобные устройства контроля используются не только в радиаторах, но и в холодильниках, утюгах, морозильных камерах или в климатических системах. Эти приборы являются неотъемлемой частью духовых шкафов, аквариумов. Нередко их применяют в сельском хозяйстве, животноводстве: например, в тепличных комплексах и инкубаторах, где очень важно поддерживать идеальные условия для роста растений или животных.

Плюсы

Использование термостата дает хозяевам сразу несколько преимуществ.

  1. У них появляется возможность поддерживать оптимальную температуру в ручном или автоматическом режиме.
  2. Высокая точность регулировки гарантирована. Даже модели среднего класса имеют минимальную погрешность — °.
  3. Очень легко задать разный температурный режим во всех комнатах, что позволит добиться максимального комфорта для жильцов.
  4. Приборы позволяют уменьшить счета за электроэнергию у владельцев квартир, сберечь газ либо другой вид топлива в загородных домах.
  5. Простой монтаж и беспроблемная эффективная работа регулирующих устройств гарантирует их быструю окупаемость. Она более заметна в частных домах, но ощутима и в многоэтажках.
  6. Есть возможность мгновенно перекрыть подачу воды на радиатор, в котором произошла поломка. Этот плюс наиболее важен для жильцов многоквартирных домов.

Экономия средств за счет терморегулирующих приборов может стать весьма ощутимой. Самые простые ручные механизмы помогают сократить траты как минимум на 10%. «Умные» устройство позволяют сберечь уже до 30%. Принцип работы обычного регулятора температуры понять несложно, так как эти приборы отличается простотой. Эти преимущества — причины, по которым терморегулятор имеет большой срок эксплуатации. Однако модели, дающие возможность электронного управления, гарантируют максимальный комфорт жильцов.

Минусы

Ни одна конструкция, придуманная человеком, не лишена недостатков. Слабые стороны термостатических устройств зависят от их вида. Наиболее важным фактором является точность считывания температурных показателей. Как правило, четкой работой отличаются электронные приборы. У некоторых простейших механических устройств погрешность может превышать даже °. Другой недостаток этой разновидности термостатов — низкая функциональность.

Принцип работы регулятора температуры

Перед тем как сделать окончательный выбор в пользу того или иного прибора, многие будущие владельцы интересуются, как работает термостат. Эти устройства бывают нескольких видов, но, несмотря на различия, принцип работы регулятора температуры одинаков. Он основан на свойстве жидкости (или газа) менять объем в зависимости от температуры. Устройство считывает данные из среды, в которой находится, а затем меняет их, если таковы требования.

Все устройства имеют температурный датчик, фиксирующий нагрев воздуха в комнате, или теплоносителя системе. Для регулировки в терморегуляторе предусмотрена рабочая часть. Простейший термостат имеет термическую головку и клапан. В первой находится сильфон — цилиндр, имеющий гофрированные стенки.

В нем находится теплоноситель — специальная жидкость либо газ. Сильфон соединен с клапаном, изменяющим поток, штоком. Когда измеряемые параметры выходят за пределы заданных значений и повышаются, среда начинает расширяться, давление действует на клапан. При остывании воздуха или теплоносителя происходят обратные изменения.

  1. Когда температура воздуха в помещении понижается, сильфон сжимается, поднимая шток. Благодаря этому клапан получает возможность пропускать большее количество теплоносителя.
  2. Если в комнате, наоборот, становится слишком тепло, то сильфон, наоборот, растягивается, а шток опускается, закрывая клапан. Поток теплоносителя уменьшается, а температура понижается.

Эти процессы сменяют друг друга постоянно. Точность работы современных устройств гарантирована. Если модели среднего ценового сегмента реагируют на изменения внешней среды на °, то более совершенные приборы уменьшают это значение до десятых долей.

Несмотря на простоту этих терморегуляторов (или благодаря ей), такие механические конструкции наиболее популярны. Их выбирают для радиаторов в квартирах и для обогревательных систем загородных домов. Однако на точность приборов могут повлиять сквозняки, близкое расположение источников холодного воздуха, прямое попадание солнечных лучей, внезапное повышение или понижение температуры на улице.

Разновидности приборов

Устройства, предназначенные для контроля, отличаются конструкцией, но принцип работы регулятора температуры одинаков. В них могут быть задействованы механические, электронные узлы, либо их комбинации. Сейчас на рынке представлены 4 разновидности компактных комнатных приборов:

  • механические;
  • электронные;
  • программаторы;
  • беспроводные, радиоуправляемые.

Модели используются для систем теплых полов, для батарей отопления, для электрообогревателей и котлов.

Механические регуляторы

Это самые простые, практически безотказные модели. Все настройки в них делаются вручную. Терморегуляторы, предназначенные для систем отопления, различаются чувствительной средой, которая находится внутри сильфона. Поэтому механические устройства в продаже можно найти двух видов — жидкостные и газонаполненные. Первые приборы отличаются низкой ценой, вторые — большей надежностью.

У газонаполненных моделей лучшая скорость и плавность реакции на изменение температуры. Другое преимущество — минимальное влияние параметров теплоносителя на газовую среду сильфона терморегулятора. Для жидкостных регуляторов характерна большая точность передачи давления на шток.

К минусам механических терморегуляторов относится:

  • необходимость ручной настройки, она часто требует корректировки;
  • некоторая неточность температурных показателей, отличие от реальной температуры воздуха или воды может составлять °.

Главное преимущество таких регуляторов — приемлемая цена. Долговечность — второй плюс, так как в простейшей конструкции практически нет элементов, которые могут неожиданно выйти из строя. Другие модели имеют аналогичный принцип работы регулятора температуры, однако их оснащение более сложное.

Электронные термостаты

Эти устройства стоят дороже, зато они предоставляют хозяевам возможность не беспокоиться о постоянном контроле их работы. В таких регуляторах предусмотрена настройка с плавным изменением параметров в определенное время суток. Им не нужна какая-либо корректировка в случае повышения либо понижения температуры за окном.

Все необходимые показатели можно увидеть на информативном дисплее. Он бывает кнопочным или сенсорным. Для удобства владельцев в комплект входит пульт дистанционного управления. Недостатки моделей — более высокая стоимость, риск поломки электроники.

Регуляторы-программаторы

Программируемые термостаты — довольно дорогие устройства, которые имеют несколько режимов и программ. Зато с их помощью возможен постоянный контроль отопительной системы, создание максимально комфортного микроклимата, настройка для экономии энергоресурсов.

Аналоговые приборы имеют систему Wi-Fi, позволяющую отслеживать и контролировать работу через смартфон или планшет. Однако за максимальное удобство придется заплатить большую сумму. Других недостатков, помимо возможного отказа довольно сложного оборудования, у программаторов нет.

Беспроводные модели

Радиоуправляемое устройство (программируемый терморегулятор) — совершенство, из-за которого придется смириться в самой высокой ценой прибора. Зато их большое преимущество — отсутствие электрического кабеля. Такое оборудование предназначено для тех владельцев, которые не хотят «портить» интерьер ни проводами, ни дополнительными розетками.

Чаще регулятор температуры необходим для обогревательной системы, особенно если она является единственным или основным источником тепла. В таком случае ее рекомендуют оснащать электронным либо программируемым терморегулятором. Для вспомогательного обогревательного оборудования подойдет любой прибор, имеющий датчик нагрева.

Терморегуляторы и их использование

Ту или иную модель регулятора температуры выбирают в зависимости от условий. Так как поддержание комфортного микроклимата главное их предназначение, о необходимости приборов задумываются, когда не получается эффективно контролировать температуру в помещениях.

Комнатные термостаты для радиаторов

В этом случае регулятор температуры воды приобретают для поддержания оптимальной температуры в помещении, так как повысить нагрев теплоносителя он не в состоянии. Зато прибор будет полезен, эффективен для ее понижения. Поскольку разница между моделями для однотрубных и двухтрубных контуров отопления существует, тип системы надо учитывать при монтаже.

Регулятор-ограничитель температуры теплоносителя может иметь ручное, электронное либо программное управление.

  1. Механические устройства немногим отличаются от простейших «коллег» — от вентилей. В зависимости от температуры в комнате такие регуляторы уменьшают или увеличивают поступление воды в радиатор. Долговечность их не всегда привлекательна, потому что контролировать температуру вручную приходится постоянно, но мало кому понравятся лишние хлопоты. Ориентиром тут выступают только личные ощущения дискомфорта — прохлады либо чрезмерного тепла.
  2. Батареи, оснащенные электронными или программируемыми устройствами, наоборот, не требуют к себе повышенного внимания. После выставления параметров нагрева воды такая система начнет работать в автоматическом режиме. Термостат будет перекрывать воду, когда датчик обнаружит превышения показателей, и снова откроет, если в комнате через какое-то время похолодает. Хозяева могут периодически проверять работу, наблюдая за значениями на дисплее.

В квартирах многоэтажек более популярными остаются механические модели. Программаторы и электронные термостаты пользуются большим спросом у владельцев домов с водяным автономным отоплением. Некоторые модели оснащаются выносными датчиками. Поскольку приборы могут полностью контролировать работу котлов, приобретение сложных и дорогих термостатов имеет смысл. Такое оборудование, как правило, окупается всего за несколько месяцев отопительного сезона.

Регуляторы температуры для дачи

Дом, в котором не проживают постоянно, или дача также нуждается в терморегуляторе. В таком случае приборы воспрепятствуют замерзанию дома, так как смогут поддерживать минимальную температуру. Она предотвратит замерзание труб и отсыревание стен, а значит, убережет здание от возможного «нашествия» плесневого грибка.

Сейчас пользуются спросом инфракрасные обогреватели, безопасные, эффективные и экономичные. Для них обычно выбирают электронные устройства либо программаторы. Если на даче оборудовано водяное отопление, которое работает от котла, то приобретение «умного» терморегулятора тоже оправдано. Он будет включать оборудование, следить за температурой, защищать контур от замерзания.

Правила монтажа теплорегулятора

Принцип работы регулятора температуры не единственное, что необходимо знать будущему владельцу, если он привык во всем полагаться только на себя, и предпочитает устанавливать оборудование самостоятельно. Прибор обязательно устанавливают в месте подачи воды в радиатор. Чугунные модели для установки приборов не подходят. Это не все ограничения, поэтому для эффективной работы прибора перед монтажом необходимо познакомиться еще с несколькими правилами.

  1. Вертикальная установка устройства запрещена, потому что в этом случае на его работу будут постоянно влиять восходящие теплые потоки воздуха. Минимальное расстояние от пола до прибора должно составлять мм.
  2. Регулятор температуры не прячут в нише, не закрывают экранами или шторами, так как любые препятствия приведут к некорректным показаниям. Возможный выход — покупка термостата с выносным, дистанционным датчиком. Элемент этот крепят к стене.
  3. Последовательность установки нескольких приборов в жилье различна. В частных домах монтаж всегда начинают с верхних этажей. В квартирах — с тех комнат, где колебания температуры наиболее ощутимы: это помещения, «смотрящие» на юг, кухни, гостиные.
  4. Шаровой кран перед терморегулятором — лучший вариант. Да, терморегулятор может исполнять роль запорного элемента, однако ни к чему подвергать прибор ненужным нагрузкам. Грубая ошибка — монтаж шарового крана между термостатом и радиатором.

Есть еще одна особенность: это отличие в монтаже прибора на одно- и двухтрубные системы. В первом случае необходимо установить байпас — отрезок, соединяющий подводящую и отводящую трубы. Цель элемента — обеспечение движения теплоносителя даже при закрытом клапане терморегулятора. Важное условие одно: диаметр байпаса должен быть меньше, чем у подающей трубы. Например: 16 против 20 у стояка.

Терморегулятор всегда монтируют на подающей трубе, вентиль ставят на обратной. Других отличий в установке на разные системы нет. Процесс монтажа устройства стандартный. Прибор имеет резьбу, под которую подбирают фитинги, или нарезают резьбу непосредственно на трубе.

Как настраивают регулятор температуры?

Установка оборудования проблем не обещает. Первичная его регулировка происходит на заводе, однако она производится по стандарту, а такие усредненные показатели не могут устроить всех. Перенастройка зависит от вида прибора. Если говорить о простейшей конструкции, то в этом случае последовательность действий такова:

  1. После монтажа закрывают окна и все двери. Если есть вытяжка, то ее включают. Затем открывают клапан полностью — перемещают головку терморегулятора в крайнее левое положение.
  2. Устанавливают термометр в то место комнаты, где необходима максимально комфортная температура. После того как температура повысится примерно на °, клапан закрывают до упора, вправо.
  3. Потом начинают следить за изменением показаний термометра. Когда будет достигнута идеальная температура, терморегулятор медленно открывают до тех пор, пока не появится шум, пока не начнет прогреваться радиатор. В этот момент останавливаются.

Последнее действие хозяев — запоминание показателей на приборе. Для удобства выставления отличающихся параметров в разных комнатах можно сделать таблицу, имеющую две графы-колонки. Одна с делениями на приборе, другая с температурой, соответствующей им. Чтобы терморегулятор прослужил дольше, его рекомендуют периодически полностью открывать в летний сезон.

Принцип работы регулятора температуры понять нетрудно, он довольно прост. Гораздо сложнее выбрать оптимальный прибор, найти «свою» разновидность. Поскольку ассортимент достаточно широк, в этом случае многое решает вид отопительной системы (автономная или централизованная, основная или вспомогательная). Имеет значение и готовность хозяев променять определенную (и немалую) сумму на устройство, способное обеспечить максимально комфортные условия для проживания.

С одним из термостатов можно познакомиться, посмотрев это видео:

разновидности регулируемых радиаторов, краны и вентили

О регулировке температуры батарей отопления задумываются многие жители города, и на это есть причины — желание сэкономить и получить возможность контролировать качество отопления в доме. Холода часто наступают неожиданно, и каждый владелец квартиры хотел бы иметь терморегулятор, посредством которого получится создавать комфортные для проживания условия как зимой, так и в другое время года.

Регулировка температуры батарей отопления в квартиреИмея возможность контролировать температуру батарей, можно существенно снизить расходы на отопление

Преимущества регулировки

О том, что существует регулировка батарей отопления в квартире, знают не все. Более того, не каждый понимает, для чего она нужна.

Однако регулировка температуры батарей отопления имеет минимум 3 преимущества:

  1. Благодаря ей вода по трубам может свободно перемещаться. В результате этого значительно уменьшается вероятность появления так называемой завоздушенности. Отопительная система имеет высокий коэффициент полезного действия, при этом создается благоприятный микроклимат.
  2. Регулируя температуру, можно уменьшать финансовые расходы на нагрев батарей. Если понизить температуру воздуха в комнате всего на один градус, можно добиться экономии свыше 5%.
  3. Благодаря регулировке отопления в особо холодное время можно увеличить подачу тепла.

Следует помнить, что приступать к работе по изменению системы в квартире лучше всего летом, когда необходимость в отоплении еще отсутствует.

С принципом работы радиаторного термостата вы сможете ознакомиться в видео:

Температурные нормы

Когда есть возможность регулировать температуру в батареях, важно уметь правильно определить, в каких случаях и насколько сильно необходимо уменьшать или, наоборот, увеличивать градус в квартире. Главное — не сделать так, чтобы стало слишком жарко или чересчур холодно.

Преимущества регулировки температуры батарей отопленияНеобходимо научиться определять для себя комфортную температуру

Необходимо научиться быстро определять, какая температура будет наиболее комфортной для проживания. В деле по определению оптимальной температуры для квартиры может помочь СНиП. Для угловых комнат лучшая температура — чуть более +20°C, а вот для всех остальных помещений — наоборот, чуть менее этого значения. Зная об этом, владелец квартиры может без особых проблем изменять температуру воздуха в своих комнатах и чувствовать себя вполне комфортно.

Методы настройки

Не в каждом жилом здании установлены регулируемые батареи отопления, более того, их установка во многих случаях может быть попросту невозможной. Например, регулирующие вентили не могут быть установлены, если здание имеет вертикальную верхнюю разводку, т.е. когда подавать тепло начинают сверху. Следовательно, на верхних этажах всегда слишком жарко, и владельцам квартир приходится даже настежь открывать окна. При этом на нижних этажах батареи чуть холоднее.

Если же в здании имеется однотрубная система, такой проблемы не возникает, поскольку вода после прохождения по радиаторам возвращается обратно в центральный стояк. Благодаря этому теплый воздух равномерно распределяется по комнатам независимо от того, на какой высоте они находятся — хоть на первом этаже, хоть на двадцатом. При этом на подающей трубе у батарей имеются регулирующие клапаны.

Лучшим вариантом для подачи тепла и возможности его регулировать является двухтрубная система отопления. В ней имеются отдельные трубы как для подачи нагретой воды, так и для ее возвращения в систему. В этом случае радиаторы в каждой комнате регулируются отдельно, ведь у каждой из них имеются специальные клапаны.

нормы температурыРегулируя подачу тепла, можно создавать комфорт и значительно сокращать затраты на отопление

Главная цель, которую преследуют при регулировке теплоподачи, — достичь определенной температуры воздуха в комнате. Добиться этого можно одним из двух способов:

  1. Качественным. Метод подразумевает изменение качества воды. Для этого нужно оказывать какое-либо влияние на ее нагрев.
  2. Количественным. При его применении необходимо изменять скорость, с которой подается вода. Делается это посредством циркуляционного насоса или запорного механизма. Если объем подаваемой воды будет уменьшен, то это поспособствует снижению температуры. Если же, наоборот, увеличить скорость подачи воды, в комнате станет теплее.

Если в здании имеется качественное оборудование, возможно использование двух методов одновременно.

Разновидности устройств

Оказывать влияние на температуру воздуха в доме можно лишь при наличии специального регулирующего устройства.

Методы настройки регулятора температуры батарей отопленияУстройство, регулирующее подачу тепла в дом, может быть нескольких видов

Существует несколько их разновидностей:

  1. Кран. Самый простой тип. Он прикрепляется к батарее и при поворачивании может уменьшать или увеличивать скорость подачи воды. Впрочем, краны, установленные на батареях, — это, скорее, не регуляторы, а средства защиты отопительной системы от аварийных ситуаций.
  2. Вентиль. Это недорогое приспособление, которое действует по тому же принципу, что и кран. Поскольку на вентилях отсутствует какая-либо температурная шкала, регулировать с их помощью тепло в квартире можно лишь наугад — сначала повернуть, а потом подождать и посмотреть, что изменится.
  3. Устройства с термической головкой.

Последний тип теплорегуляторов подразделяется на два подтипа. Они таковы:

  1. Регуляторы прямого действия. Их основной элемент — наполненный газообразным веществом или особой жидкостью сифон. Этот элемент способен реагировать на любые малейшие изменения температуры воды, циркулирующей в системе. Если вода станет горячее, то газообразное вещество или жидкость внутри сифона начнет расширяться и оказывать давление на специальный клапан. Последний начнет перемещаться и перекрывать циркулирующей воде доступ в трубы. При уменьшении температуры воды в трубах будет происходить обратный процесс.

    Методы настройки регулятора температуры батарей отопленияЭлектронный датчик регулирует теплоподачу по заданным параметрам

  2. Устройства с электронным датчиком. Владелец может задать ему нужные параметры, после чего оно автоматически, управляясь «электронным мозгом», будет следить за изменениями температуры циркулирующей по трубам воды. Если температура станет выше заданного параметра, то скорость подачи воды ументшится. Если же теплоноситель, наоборот, станет холоднее, подача его увеличится.

Нередко бывает, что низкое качество установленного терморегулятора вынуждает жильцов испытывать дискомфорт. Тогда они начинают задумываться о том, как можно улучшить отопление, повысив его эффективность.

Самостоятельная корректировка

Прежде чем искать способ повышения качества отопления в квартире, нужно понять, почему воздух в комнатах плохо нагревается. Возможно, это просто какие-то изъяны в отопительной системе, а может быть, у радиаторов слабая теплоотдача.

Самые частые причины плохого отопления комнат в квартире следующие:

  1. Завоздушенность отопительной системы. Если в трубах много воздуха, то они заметно хуже выполняют свою основную функцию. Исправить проблему можно посредством слива воды.
  2. Ошибки при подключении. Например, если байпас останется открытым, движение воды по трубам будет нарушено.
  3. Неправильные расчеты системы на начальном этапе. Возможно, был выбран не тот диаметр труб, установлено слишком много или мало батарей.
  4. Засор отопительной системы. В трубах при длительном использовании неизбежно появляется засор, который препятствует движению воды. Именно поэтому из-за недостаточного объема горячей жидкости воздух в помещении плохо прогревается.

    Самостоятельная корректировка температуры батарей отопленияЗасоры в трубах могут стать причиной понижения температуры в доме

Помимо вышеперечисленных, могут быть и другие причины некачественного отопления. Выявить их помогут специалисты.

Есть множество способов увеличить недостаточный коэффициент полезного действия отопительной системы в квартире. Главное — точно выявить причину такой проблемы. Например:

  1. Если неправильно подключена батарея, нужно изменить подключение. Предварительно такое действие должно быть согласовано с управляющей компанией.
  2. Если же причина недостаточного отопления кроется в неверно проведенных расчетах, то проблему можно решить подключением еще одной или нескольких батарей.

Бывает, что в помещении из-за каких-то неполадок в работе отопительной системы не холодно, а слишком жарко. В этом случае нужно уменьшить большой поток тепла. Сделать это поможет только терморегулятор.

Регулировка температуры в помещении посредством терморегулятора проходит в 3 этапа:

Регулировка температуры посредством терморегулятора Процесс регулировки температуры терморегулятором происходит в несколько этапов

  1. На каждом радиаторе следует стравить воздух.
  2. Отрегулировать давление в радиаторах. Для этого на первой от котла батарее откручивается вентиль (достаточно будет пары оборотов). Затем на следующей батарее вентиль прокручивается уже в три оборота и так далее. Отдаляясь от котла, необходимо увеличивать количество оборотов на один. В результате давление воды будет равномерно распределено по всем батареям.
  3. Устанавливается терморегулятор. Причем его вид зависит от типа системы отопления, использующейся в квартире.

Если система принудительная, следует устанавливать специальные вентили. В проточной регулировать температуру лучше всего помогут терморегуляторы, а в двухтрубной можно изменять не только степень нагрева воды, но и ее объем в радиаторах.

Особенности эксплуатации

После установки терморегуляторов необходимо проверить их работоспособность и отрегулировать батареи. Придется подождать начала отопительного сезона и запуска центрального теплоснабжения, но перед этим важно провести полную регулировку отопительной системы:

  1. Проверить работоспособность регуляторов.
  2. Убедиться в том, что параметры регулирующих устройств соответствуют тем данным, которые указаны в их техническом паспорте.
  3. Устранить неисправности, если они были обнаружены при проверке работоспособности.

Особенности эксплуатации терморегулятораПосле установки терморегуляторов, обязательно проверите их работоспособность

При эксплуатации терморегуляторов не стоит забывать о том, что на работу системы оказывают влияние особенности климата местности и уровень теплоизоляции помещения. Их обязательно нужно учитывать при регулировке температуры батареи.

Эффективные способы регулировки температуры радиаторов

Раньше о регулировке температуры помещения при использовании радиаторов отопления речи не было. Регулировали температуру путем открывания и закрывания форточки, так как регулирующей арматуры не продавали. Регулировали температурой теплоносителя, уменьшая или добавляя температуру на котле. Но прогресс шел вперед и новые возможности строительства подразумевают более комфортные и надежные способы регулировки температуры радиаторов в помещениях. Ниже поговорим о них подробно.

Подстройка оптимальной температуры батарей отопления позволяет создать комфортный микроклимат в доме, который будет радовать Вас долгие годы. Регулировка позволяет:

Существует несколько кранов, которыми можно регулировать температуру батарей:

Первым этапом в развитии способов регулирования температуры  батарей отопления стали обычные краны и вентили. Вентилями этими просто прикрывали проток теплоносителя через радиатор, тем самым повышая или понижая температуру в помещении.

Далее придумали автоматические термостатические головки. Они имеют шкалу температур и устанавливаются вместе со специальным клапаном под термоголовку. Благодаря тому, что головка заполнена специальным средством, чутко реагирующим на перепады температуры, происходит сужение или расширение этого состава. Расширение воздействует на шток клапана и происходит так же его открытие или закрытие

Происходит добавление или ограничение теплоносителя, поступающего в радиатор условно автоматическим способом. Выставлять исходную желаемую температуру в помещении приходиться на головке вручную.

Первый тип — это головки, которые монтируют непосредственно на радиатор с помощью клапана. На головке выставляется необходимая температура и происходит регулировка протока теплоносителя через радиатор.

Вторая группа термостатических головок — это головки  выносные. Такие регулирующие головки монтируют на радиатор, а саму колбу с наполнителем монтируют  в стороне от радиатора. Колба соединяется с головкой с помощью капиллярной трубки. В колбе наполнитель расширяется или сужается и по трубке идет воздействие на шток клапана.

Такие головки часто используют в системах водяных теплых полов. Единственный недостаток головок с выносной колбой заключается в том, что трубка соединяющая короткая. Следовательно, не всегда колбу можно вынести именно в то место, где необходимо мерить температуру.

Регулировка батарей двухходовым клапаном с сервоприводом

Следующим этапом в развитии дистанционного регулирования температуры радиаторов стал монтаж двухходовых клапанов с сервоприводами. Такие системы начали применять в купе с системой умного дома.

В этом случае по всему помещению монтируют несколько встроенных датчиков, и, благодаря компьютерной программе, происходит открытие и закрытие, как отдельных радиаторов, так и групп радиаторов. Только теперь на шток клапана воздействуют с помощью сервопривода.

Сервопривод – это электродвигатель с очень малым числом оборотов. Благодаря чему происходит плавное открывание и закрытие клапана. Иначе при резком открывании в системе будет создаваться гидроудары. Гидроудары в свою очередь могут вывести из строя как отдельные элементы системы отопления, так и всю целиком.

Но так как не всем сегодня необходима система умного дома, то регулировку температуры, как отдельно стоящего прибора отопления, так и группы радиаторов можно производить так же с помощью двухходового клапана с сервоприводом от простого комнатного регулятора температуры.

Регулировка радиаторов сервоприводом с термостатом

Сейчас очень часто радиаторы монтируют в ниши и закрывают декоративным экраном. Такой радиатор вручную не закрыть. Термоголовка тоже не подойдет, так как радиатор закрыт и в нише создается избыточная температура.

В этом случае на помощь регулировке температуры радиаторов приходит сервопривод и датчик комнатной температуры.

сервопривод с датчиком температуры

У сервоприводов и термоголовок одинаковая резьба на накидной гайке. Следовательно, их можно использовать как с радиаторными клапанами, так и с двух, трехходовыми клапанами. Если конечно это клапаны не Giacomini, так как у этого производителя другие резьбы.

Сервоприводы являются универсальным дистанционным средством для открывания и закрывания всевозможных клапанов и задвижек. Используются сервоприводы как в системах водоснабжения и канализации, так и в системах отопления.

Сервоприводы делятся на два способа изначальной работы. Первые сервоприводы нормально открыты. Вторые нормально закрыты. Первые при поступлении на них питания закрываются, а вторые открываются. Вторые и рассмотрим, так как они нам и нужны.

Спосбы изменения температуры радиаторами

Первый способ регулировки температуры радиаторов в помещении — это когда у вас в помещении смонтирован один радиатор и он закрыт экраном. В этом случае регулировать температуру в комнате будем с помощью комнатного термостата и сервопривода.

Сначала выбираем место монтажа комнатного термостата. Обычно его располагают на 1 метр от двери. На высоте  от 1 до 1,5 метров на противоположной стене от ручки двери, чтобы при открытии двери поток холодного воздуха попадал на термостат и тот в свою очередь сразу реагировал на перепад температуры.

На подающий трубопровод радиатора монтируем клапан под термоголовку, на который накручиваем сервопривод для систем отопления.

Сервопривод нуждается в питании 220 вольт. Мощность его при этом составляет 2-3 ватта.  Кабель от него ведем к комнатному термостату.

Комнатные термостаты делятся на две группы: электронные и механические. Механические термостаты в наше время себя практически изжили, но они самые простые в монтаже. Работают как обычный выключатель. Приводите питание на термостат. Через него разрываете фазу на сервопривод и все. Термостат подает или нет питание на сервопривод.

виды термостатов

Электронные термостаты бывают простые, в плане включить выключить, а бывают термостаты программируемые.

В свою очередь электронные термостаты бывают двух видов по принципу работы:

Первые — это такие термостаты, для работы  которых необходимо питание от сети. Обычно 220 Вольт. То есть к ним подводиться питание отдельно. А от  термостата  отдельно монтируют кабель к сервоприводу.

Второй вид термостатов в питании от сети не нуждаются, так как такие термостаты оборудованы батарейкой. В этом случае, как и с механическими термостатами, через него просто разрывается фаза на сервопривод, а ноль идет на сервопривод без разрыва. При этом все термостаты необходимо подключить в щите на свой автомат для его быстрой замены или обслуживания.

Как происходит изменение температуры сервоприводами?

Подаете питание на комнатный термостат и включаете отопление. Сервопривод при этом нормально закрыт. Теперь выставляете необходимую температуру на термостате и если она выше чем температура в помещении, то термостат подает питание на сервопривод и он начинает открываться. Время полного открывания и закрывания сервопривода составляет 3 минуты.

Теплоноситель идет в радиатор и температура в помещении начинает подниматься. При поднятии температуры помещения до выставленной на термостате, термостат разрывает питание на сервопривод. Сервопривод с помощью встроенной в него пружины возвращается в нормально закрытое положение. И так далее.

Регулировка температуры помещения с несколькими радиаторами

По своему сценарию принцип регулировки температуры одинаковый с одним радиатором, но имеющий некоторые особенности.

Для того, чтобы регулировать температуру группы радиаторов, необходимо разорвать трубопровод обратной магистрали радиаторного отопления и врезать в магистраль двухходовой вентиль под сервопривод.

Для этого на этаж необходимо оборудовать нишу, в которой будут смонтирован подающий трубопровод с отсечными кранами и обратный трубопровод с клапанами под сервопривод. Все это необходимо для обслуживания.

Так как при большом количестве таких зон регулирования температуры у вас не будет возможности врезать клапаны в трубопровод, который идет горизонтально. Следовательно, трубопроводы необходимо смонтировать вертикально, изготовив для этого как бы распределительный коллектор, диаметром большим, чем основной трубопровод.

При этом в самой верхней точке, так сказать распределительного коллектора, будет собираться воздух. Для удаления воздуха необходимо использовать автоматические воздухоотводчик.

воздухоотводчик

При этом основная система для подключения будет именно двухтрубная с горизонтальным монтажом и принудительной циркуляцией.

Определяем количество зон регулирования. Монтируем радиаторы и выводим подающие и обратные трубопроводы к распределителю.

Подключаем подающие трубопроводы через шаровые краны, а обратные через двухходовые клапаны. Выбираем комнатный термостат. Определяем место его расположения. Делаем монтаж кабелей. Производим отделку помещения.

По чистовой отделке монтируем термостаты, сервоприводы и подключаем их. Подаем питание и наслаждаемся условно автоматической регулировкой температуры помещения с несколькими радиаторами. Воздухоотводчик при этом рекомендую смонтировать через шаровой кран.

Как регулировать температуру в холодильнике?

Если температура в холодильнике выставлена неправильно, это может привести не только к плохому хранению продуктов, но и к небольшому сроку жизни мотора самого холодильника. Из данной статьи вы узнаете, какая температура должна быть в холодильной и морозильной камере, а также как правильно выполнить регулировку температуры в холодильнике.

Рекомендации по регулировке температуры

Правильно выставленная температура − одно из самых главных указаний для сохранения исправного функционирования холодильника. Если с самого первого дня работы агрегата установить нужное количество градусов, это продлит срок жизни мотора на несколько лет.

Старые модели холодильников имели всего 2 режима: работающий и не работающий. Современные виды агрегатов предполагают большее количество функций.

Почему важно сохранять необходимую температуру внутри холодильника? Большинство продуктов, которые находятся в холодильной камере, должны храниться в условиях +2…+5ºС. Такое количество градусов позволит им оставаться свежими долгое время. Если агрегат охлаждает сильнее, то продукты подмерзнут и потеряют свои вкусовые свойства или текстуру. А если в холодильнике теплее нужного, есть вероятность испортить его содержимое, т.к. выше +5ºС начинают активно размножаться патогенные бактерии, вследствие чего на продуктах может появиться плесень или гниль.

Морозильная камера также требует определенной настройки температуры. Хранятся в ней по большей части те продукты, которые должны быть заморожены, – лед, овощи, рыба и мясо. Если в этой части холодильника недостаточно холодно, вокруг агрегата будет регулярно скапливаться вода – растаявший лед, а если это продолжается долгое время, то продукты даже могут испортиться. Также неправильно настроенный холодильник потребляет большее количество электроэнергии, что приводит к еще большим убыткам.

Поэтому очень важно установить температуру правильно.

Типы регуляторов

Типы регуляторов холодильника

Настроить нужную температуру в холодильнике несложно. Для того чтобы каждый человек это мог сделать самостоятельно, производителями предусмотрен специальный механизм.

По типу управления он разделяется на 2 вида: электронный и механический.

Электронный регулятор можно распознать по нахождению табло на корпусе холодильника. Чаще всего оно располагается сверху над дверцей верхней камеры, но может находиться и на двери. Для установки необходимой температуры возле табло предусмотрены кнопки, либо на дорогих моделях оно может быть сенсорным.

Механический регулятор представляет собой поворотный диск, который можно крутить в большую или меньшую сторону. Поворот по часовой стрелке делает температуру в холодильнике ниже, также вокруг диска есть цифры, показывающие уровень работы двигателя для охлаждения.

Цифровое обозначение на регуляторе

На электронном табло 1 нажатие на кнопку соответствует увеличению или уменьшению температуры на 1 градус. Установить можно только предусмотренное производителями количество градусов. Например, даже не зная правильного температурного режима для продуктов, вы не сможете установить +10ºС, заводские настройки холодильника позволяют поставить от +2 до +8ºС. Текущая температура в холодильнике указывается на табло.

При механическом типе регуляции вокруг диска также находятся цифровые обозначения, но они обозначают не количество градусов, а режим. Чем выше цифра, тем сильнее работает мотор холодильника.

Но ставить регулятор в максимальное положение не стоит, потому что работа мотора на полной мощности создаст слишком большой холод в камере, вырастет потребление электроэнергии. Помимо этого, будет больший износ двигателя, из-за чего холодильник может прослужить меньше должного срока.

Какая температура должна быть в холодильнике

как выставить регулятор температуры

Перед тем, как выставить регулятор температуры в определенное положение, нужно понять, насколько холодно должно быть в холодильной и морозильной камере. Различия связаны с наполнением холодильника – разные типы продуктов требуют разных условий хранения:

  • Мясо, рыба, яйца, твердый сыр и соусы лучше всего хранятся при температуре +1…+3ºС.
  • Колбаса, мягкий сыр и вторые блюда требуют условий хранения при +2…+4ºС.
  • Супы, вареные овощи, хлеб и молочные продукты оптимально хранить при +3…+5ºС.
  • Морепродукты − +4…+6ºС.
  • Фрукты − +6…+8ºС. Некоторые фрукты лучше хранятся не в холодильнике, а в комнатных условиях (например, бананы и ананас), это нужно учитывать при размещении плодов для хранения.

Исходя из оптимальных условий хранения различных продуктов, идеальной температурой в холодильнике является +3…+4ºС. Чтобы каждый тип продуктов находился в наиболее комфортной для хранения температуре, размещать их нужно таким образом:

  • Местом с самой высокой температурой является дверца – здесь лучше расположить соки, лекарства и соусы.
  • В ящики оптимально будет положить овощи, фрукты и соления.
  • Средние полки холодильника – лучшее место для супов, соуса и хлеба (+3…+5ºС).
  • Место, которое ближе всех к морозилке, – колбаса, яйца, пирожные (+2…+4ºС).
  • В зоне свежести лучше разместить молоко, сыр, мясо, зелень и алкоголь (немного больше 0ºС).

При данной температуре в холодильнике количество градусов в морозилке может доходить до -30. Данная часть агрегата очень выручает, когда необходимо сделать долго лежащие запасы, но хранить продукты в замороженном виде рекомендуется не дольше месяца, иначе они могут потерять свои свойства. Т.к. морозильная камера предусматривает длительное хранение продуктов, необходимо правильно ее настроить. Количество градусов в морозилке зависит от заполнения ее продуктами:

  • При небольшом количестве продуктов будет достаточно -14ºС.
  • Когда камера сильно заполнена и внутри есть мясо, нужно настроить регулятор на меньшую температуру − -20…-24ºС.
  • Идеально, чтобы морозилка работала при -18ºС.
  • Если есть необходимость срочной заморозки продуктов, можно выставить до -30ºС, но лучше не оставлять морозилку так работать долго, 2-4 часа достаточно, иначе мотор холодильника будет работать на износ.

Регулировка температуры в холодильниках известных марок

Beko

табло холодильника Beko

+5ºС – рекомендуемая температура для холодильной камеры данной модели. Этот агрегат имеет механический регулятор температуры, который позволяет установить необходимое количество градусов самостоятельно. Регулятор имеет 5 режимов, установить на 3 будет оптимальным вариантом. Не рекомендуется класть в морозильную камеру горячие продукты, т.к. это приведет к лишней нагрузке на термостат.

Bosch

Bosch

Современные холодильники данной марки обладают электронным табло, с помощью которого можно отрегулировать температуру в камерах. Чтобы настроить необходимое количество градусов, нужно нажимать на кнопки под табло. Оптимальным значением для данного холодильника является +4ºС.

Daewoo

как регулировать температуру в холодильнике Daewoo

Электронное табло в данной модели располагается спереди морозильной камеры. Также в морозилке находится контроллер потока холодного воздуха. У данного агрегата степень охлаждения измеряется не цифрами, а режимами: min, med, max, super. Первые 3 – режимы минимальный, средний и максимальный, а super необходим, когда среда, в которой находится холодильник, имеет температуру меньше +10ºС.

Чтобы выставить нужное значение, следует нажимать кнопку «Temp». Таким образом, на экране последовательно будут появляться названия режимов. Также у холодильника есть режим «Fuzzy Control» для облегчения выбора нужной температуры. Он самостоятельно определяет установки для холодильника, анализируя количество продуктов внутри, частоту открывания двери и температуру окружающей среды.

В морозильной камере вместо режима «Fuzzy Control» есть «Winter» с аналогичным принципом действия.

Eniem

как регулировать температуру в холодильнике Eniem

Данная модель относится к устаревшим типам холодильников, по типу оснащения похожа на «Минск». Здесь механическая система регулировки температуры, представляющая собой диск с 7 положениями. Оптимальным значением считается среднее – 3 или 4, в зависимости от заполнения продуктами.

LG

как регулировать температуру в холодильнике LG

Современные модели холодильников имеют электронный дисплей, позволяющий настроить температуру для каждого отделения холодильника. Старые агрегаты имели механическую систему регулировки с тремя режимами: минимальный, средний и максимальный.

Samsung

как регулировать температуру в холодильнике Samsung

Модели «No Frost» позволяют настроить температуру при помощи электронного табло. Современные холодильники позволяют установить различное количество градусов в разных отделениях холодильника, старые агрегаты обладают только общим регулировочным диском. Для холодильной камеры есть 4 уровня охлаждения, а для морозилки – 5.

Nord

как регулировать температуру в холодильнике Nord

Имеет механические регуляторы, которые в разных моделях могут находиться внутри или снаружи холодильника. Регулировочный диск имеет 3 деления.

Indesit

как регулировать температуру в холодильнике Indesit

Холодильники этой фирмы располагают только механической настройкой температуры. В некоторых моделях возле регулировочного диска нет цифровых обозначений, поэтому придется ориентироваться по количеству холода внутри камеры: чем больше повернут диск, тем сильнее поток холодного воздуха.

Атлант и Аристон

как регулировать температуру в холодильнике атлант

Холодильники «Atlant» и «Hotpoint-Ariston» не оснащаются электронным управлением. В них, как в старых моделях, есть 2 регулировочных диска, которые отвечают за холодильную и морозильную камеру агрегата.

Заключение

Для того чтобы продукты дольше оставались свежими и вкусными, а холодильник выполнял свои функции в должной мере, необходимо уметь выставлять в своем агрегате правильную температуру.

Прочитав данную статью, вы сможете настроить холодильник таким образом, чтобы получить максимум его функций.

Как осуществляется регулировка температуры теплого водяного пола

Выделив немалое количество средств на создание системы водяного теплого пола (ТП), пользователь порой не получает ожидаемого уровня комфорта или экономии, о которых наперебой твердят сторонники подобного отопления. И если расчет коммуникаций был выполнен верно, а монтаж проведен без ошибок, то, скорее всего, причина неэффективности тепловой установки в её некорректных функциональных настройках. К ним в первую очередь относится регулировка температуры теплого водяного пола. При этом она опирается на понятия температуры теплоносителя в системе и поверхности напольного покрытия, а также температурного режима в помещениях.

Разберем, как на практике связываются воедино эти понятия, при различных способах управления ТП.

регулировка температуры теплого водяного пола

Оптимальные температурные параметры

Предпочитаемая температура теплого пола подбирается под индивидуальные запросы. Ведь кому-то нравится бодрящая свежесть в доме, а кто-то желает нежиться в согревающих энергетических потоках. Тем не менее, существуют общепринятые нормы по подготовке теплоносителя, прогреву напольных покрытий и, соответственно, воздуха в помещениях. Они обуславливаются санитарными и технологическими требованиями. Об этих нормах уже упоминалось здесь, однако, напомним кратко:

  • оптимальной считается температура поверхности пола 280С;
  • если помещение рассчитано на длительное пребывание жильцов или в нем имеются другие источники отопления, то целесообразно снизить температуру до 22-260С – такой энергетический режим является оптимальным с медицинской точки зрения. Кроме того, нагрев покрытий незаметен при телесном контакте с ними, что не вызывает тактильного дискомфорта;
  • для помещений, где ТП является единственным источником отопления, а также, где жильцы находятся лишь периодически (ванная, туалет, прихожая, лоджия, крытая веранда), температуру поверхности напольного покрытия допустимо поднять до 320С.

Способы управления температурой теплого пола

Для обеспечения указанных требований санитарных и технологических норм, предпочтений пользователей, настройка теплого пола может осуществляться способами регулировки:

  • температуры теплоносителя, поступающего на входе в систему ТП. Основное управление интенсивностью теплового потока осуществляется изменением установок теплогенератора (котла). Оно подходит только при подаче низкотемпературного теплоносителя, когда на компенсацию теплопотерь напольного обогрева работает отдельный котел. Этот метод регулирования является наиболее простым, хотя и низкоэффективным, поэтому в небольших частных системах ТП используется редко;
  • коллекторов и смесительных узлов. Подобная регулировка может быть ручной или автоматической, осуществляться индивидуально по каждому контуру или в целом по всей группе нагрева – на общей гребенке, через которую идет снабжение теплоносителем нескольких веток ТП.

Точками отсчета для изменения настроек системы могут стать замеры температуры теплоносителя в подающем или обратном распределителях. Ведь для водяного обогрева, в отличие от электрического, не характерна установка тепловых датчиков в конструкцию пола – их монтируют непосредственно на коллекторах. Чаще всего такие датчики или чувствительные элементы являются частями термостатических клапанов, посредством которых и осуществляется регулировка теплого пола.

Управляющие сигналы на автоматические устройства также могут поступать с воздушных термодатчиков, размещенных в отапливаемых помещениях.

регулятор тёплого пола

Ручная регулировка коллекторов ТП

Наиболее простой, хотя и затратный по времени способ настройки – это регулировка температуры теплого пола с использованием ручных вентилей. Задача несколько упрощается с установкой на гребенку расходомеров (ротаметров).

Расходомеры упрощают дозировку количества циркулирующего теплоносителя (расхода) в одном отдельно взятом контуре системы теплого пола. В случае группового контроля температуры, по всему коллектору, ротаметр может также использоваться для балансировки поступления теплоносителя (сглаживания разницы в гидравлических сопротивлениях) по петлям различной длинны.

Основные элементы расходомерного клапана, это:

  • корпус с запорно-регулирующим клапаном. Он вкручивается в соответствующее техническое отверстие коллектора;
  • колба из прозрачного пластика или стекла с нанесенной шкалой;
  • поплавок указатель, позволяющий визуально контролировать расход жидкости через ротаметр.

Ручная регулировка коллектора теплого пола осуществляется путем прикручивания/откручивания ручных вентилей или настройкой пропускной способности расходомеров.

Важно! Улучшение эффективности работы системы напольного отопления, в результате её ручной настройки, будет заметно лишь в случае интенсивной циркуляции теплоносителя по ней. Добиться этого возможно только, при использовании отдельного теплонасоса.

температура теплого пола

Последовательность ручной настройки температуры теплого водяного пола

В начале настроечных операций необходимо убедиться, что трубопроводы системы ТП (вторичного контура) полностью заполнены теплоносителем и не имеют воздушных пробок. Их наполнение осуществляется вслед за основной системой отопления (первичным контуром). В это время вся запорно-регулирующая арматура на коллекторах должна быть закрыта.

После открытия коренных кранов на подачу и обратку распределителей для теплого пола, последовательно открываются запорные устройства на каждой из петель. Стравливание воздуха осуществляется через краны Маевского или автоматические воздухоотводчики гребенок. Заполнение очередной ветки рекомендуется выполнять, только после полного заполнения предшествующей и её гарантированного обезвоздушивания.

Завершив заполнения первой петли необходимо включить теплонасос вторичного контура отопления и прогнать теплоноситель по его системе. Эффективность циркуляции жидкости проверяется встроенными или накладными термометрами. В крайнем случае, можно просто одновременно приложить руки к трубам подачи и обратки – они должны быть теплым, но с небольшой разницей в нагреве.

Заполненную первую петлю, следует отсечь с обоих концов от коллекторов, используя локальную запорно-регулирующую арматуру. Затем, вышеперечисленные действия осуществляются со следующей петлей.

После последовательного заполнения всех контуров ТП, их запорные устройства открываются, а теплонасос включается в рабочий режим. Температура теплого водяного пола настраивается через подачу теплоносителя в каждую его ветку.  Она устанавливается изменением расхода жидкости (вентилем либо ротаметром), а контроль осуществляется по изменению градиента температур между подающим и обратным потоком. В конечном итоге, эта разница для различных контуров должна оказаться одинаковой, в пределах 5-150С. Чем длиннее петля, тем интенсивнее будет остывать теплоноситель и тем больший расход его требуется.

Важно! Теплообмен в напольных водяных системах отопления осуществляется с большой инерционностью. Задержка прогрева поверхности покрытия особенно заметна, если трубы уложены в слишком толстую бетонную заливку (свыше 60-70 мм). Иногда эффект от изменения интенсивности подачи теплоносителя становится заметным только через несколько часов.

Для контроля правильности регулировки теплого водяного пола рационально, использовать бесконтактные лазерные или контактные электрические термометры. Их монтаж для замера температуры труб подачи и обратки поможет сократить время получения результата изменения настроек с нескольких часов до 10-15 мин.

Автоматическая регулировка температуры ТП

Автоматическая регулировка теплого пола может осуществляться термомеханическим или электронным способом с применением электромеханических исполнительных устройств, управляющих работой запорной арматуры.

Термомеханическая система управления

Основывается на работе термостатических клапанов или кранов с термоголовками, реагирующих на изменение температуры теплоносителя. Различные модели подобной запорно-регулирующей арматуры сегодня предлагает множество производителей, например, Oventrop. Однако независимо от названия и типа используемого в них термореактивного вещества (жидкости или газа), это термомеханические саморегулирующиеся механизмы, которые наиболее целесообразно устанавливать для контроля температуры одного, отдельно взятого контура.

Принцип действия термоклапанов прост, что делает их весьма надежными и отказоустойчивыми. Медный, латунный или бронзовый сердечник, установленный в корпусе устройства, разогреваясь проходящим потоком теплоносителя, передает температуру термореактивному наполнителю. В свою очередь, увеличивающийся в объеме термореактивный элемент толкает сердечник, который перемещая клапан, постепенно блокирует циркуляцию нагретой жидкости.

Термостатический клапан для теплого пола, помимо установки на распределительной гребенки, может монтироваться в отдельную сборку типа «унибокс». Подобные сборки включают также автоматические воздухоотводчики, которые совместно с термостатами помещаются в компактные коробки (боксы). Использование «унибокса» позволяет для регулировки температуры в отдельно взятой ветке ТП не привязываться к громоздким коллекторным шкафам, что особенно удобно при небольшом количестве контуров.

унибокс для теплого пола

Кроме того, термомеханические регуляторы тёплого пола могут иметь выносные воздушные чувствительные элементы. Они позволяют настраивать их на управление потоком теплоносителя не по его температуре, а по температуре воздуха в помещениях. Принцип их действия тот же, только термореактивное вещество гораздо чувствительней. Воздушную термоголовку целесообразно устанавливать для одновременного контроля нескольких контуров в одном помещении, где водяной напольный обогрев является единственным источником отопления.

Электронная система управления

В ее состав входят электронные термометры, контроллер и электроприводы (исполнительные устройства, сервоприводы). Механизмы электроприводов могут крепиться к смесительным головкам обычных регулировочных вентилей (клапанов) или являться частью их конструкции. Изменение интенсивности подачи теплоносителя осуществляется в соответствии с заданными пороговыми значениями. Средой измерения для датчиков температуры автоматического регулятора температуры теплого пола может служить как теплоноситель, так и воздух в помещениях.

Важно! Подобная регулирующая аппаратура является достаточно дорогим удовольствием, но при этом она способна обеспечить оптимальные режимы работы напольного обогрева и максимальную экономию энергоресурсов. Кроме того, электронные регуляторы позволяют программировать ТП с привязкой режимов его работы к различным временным периодам, что гарантирует пользователю максимальный тепловой комфорт.

управление теплым полом водяным

Влияние способа подачи теплоносителя на выбор технологии регулировки

Контроль разогрева водяных теплых полов, оборудованных собственными теплонасосами, происходит в условиях непрерывной подачи теплоносителя с большой скоростью и в больших объемах. Такие системы используют подмес охлажденной жидкости к потоку подачи, чтобы привести его энергетические параметры к заданным. Подмес осуществляется в насосно-смесительных узлах (НСУ), которые понижают температуру теплоносителя из первичного высокотемпературного контура отопления до расчетных. Дальнейшая регулировка температуры теплого пола осуществляется на гребенках и уже была описана выше. НСУ блоки обеспечивают оптимальные условия работы напольного обогрева, а также позволяют устанавливать его на неограниченных площадях.

Тем не менее, при небольшой квадратуре ТП имеется возможность уйти от использования дорогих смесительных узлов. Температура теплоносителя для теплого пола, в этом случае, поддерживается способом ограничения потоков или по RTL схеме. Функциональный принцип действия схемы заключается в порционной подаче теплоносителя в контуры. В каждой ветке активный элемент термостатического клапана, установленный на обратке, разогревшись до установленного температурного максимума, перекрывает поток рабочей жидкости. Тепло, постепенно отдаваемое теплоносителем, рассеивается в бетонной стяжке. После охлаждения системы до минимального температурного порога, клапан открывается, и цикл порционной подачи повторяется.

rtl клапан для теплого пола

Простота RTL регулировки нагрева теплого пола делает её особенно привлекательной. Ведь для неё достаточно использования набора термомеханических клапанов, установленных на гребенке, либо компактных сборок типа «унибокс». Однако, выбирая RTL схему, не стоит забывать и о её ограничениях:

  • она применима только в теплых полах, выполненных под толстую бетонную стяжку, играющую роль теплового аккумулятора;
  • для эффективного функционирования, помимо хорошего теплоотвода, трубопроводы контуров должны обладать минимальным гидравлическим сопротивлением. Это необходимо для быстрого обновления теплоносителя. С учетом отсутствия теплонасоса в системе ТП подобные условия соблюдаются, если длина веток не превышает 50 м при диаметре трубопроводов 16 мм. Если же необходимо несколько увеличить длину прокладки контуров, то рекомендуется использовать трубы Ø 20 мм.

Важно! Использование труб разных диаметров в одной системе (на одном коллекторе) теплого пола с RTL регулированием настоятельно не рекомендуется.

Принцип работы регулятора температуры, виды, правила монтажа

Главная задача отопительной системы — создание для жильцов максимально комфортных условий, поддержание оптимальной температуры в помещениях. Достичь цели можно несколькими способами, однако самый удобный и распространенный всего один. Это использование специальных приборов — терморегуляторов. Такие устройства работают не только в системах отопления, они являются важным элементами холодильников, а также кондиционеров. Поскольку не у всех есть возможность регулировать температуру и скорость подачи теплоносителя, можно модернизировать систему, оснастив ее этим прибором. Однако прежде чем приобретать устройство будущим хозяевам не мешает понять принцип работы регулятора температуры, узнать о конструкциях максимум информации.

Знакомство с устройствами

Первые комнатные регуляторы температуры были созданы в Дании еще в прошлом веке, после Второй Мировой — в конце 1940-х. Время шло, простейший прибор модернизировался, появлялись новые его разновидности. В наше время ассортимент терморегуляторов уже довольно широк. Можно купить модели для централизованных систем отопления, для котлов, работающих автономно, для теплых полов и инфракрасных излучателей.

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

Второе название этого небольшого комнатного прибора — радиаторный термостат. Это специальный механизм, который встраивают в подающую трубу. Терморегулятор дает возможность практические мгновенно менять скорость подачи теплоносителя, тем самым контролируя температуру в помещении. Погрешность данных устройств обычно незначительна, поэтому все они достаточно эффективны.

Подобные устройства контроля используются не только в радиаторах, но и в холодильниках, утюгах, морозильных камерах или в климатических системах. Эти приборы являются неотъемлемой частью духовых шкафов, аквариумов. Нередко их применяют в сельском хозяйстве, животноводстве: например, в тепличных комплексах и инкубаторах, где очень важно поддерживать идеальные условия для роста растений или животных.

Плюсы

Использование термостата дает хозяевам сразу несколько преимуществ.

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

  1. У них появляется возможность поддерживать оптимальную температуру в ручном или автоматическом режиме.
  2. Высокая точность регулировки гарантирована. Даже модели среднего класса имеют минимальную погрешность — 1-2°.
  3. Очень легко задать разный температурный режим во всех комнатах, что позволит добиться максимального комфорта для жильцов.
  4. Приборы позволяют уменьшить счета за электроэнергию у владельцев квартир, сберечь газ либо другой вид топлива в загородных домах.
  5. Простой монтаж и беспроблемная эффективная работа регулирующих устройств гарантирует их быструю окупаемость. Она более заметна в частных домах, но ощутима и в многоэтажках.
  6. Есть возможность мгновенно перекрыть подачу воды на радиатор, в котором произошла поломка. Этот плюс наиболее важен для жильцов многоквартирных домов.

Экономия средств за счет терморегулирующих приборов может стать весьма ощутимой. Самые простые ручные механизмы помогают сократить траты как минимум на 10%. «Умные» устройство позволяют сберечь уже до 30%. Принцип работы обычного регулятора температуры понять несложно, так как эти приборы отличается простотой. Эти преимущества — причины, по которым терморегулятор имеет большой срок эксплуатации. Однако модели, дающие возможность электронного управления, гарантируют максимальный комфорт жильцов.

Минусы

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

Ни одна конструкция, придуманная человеком, не лишена недостатков. Слабые стороны термостатических устройств зависят от их вида. Наиболее важным фактором является точность считывания температурных показателей. Как правило, четкой работой отличаются электронные приборы. У некоторых простейших механических устройств погрешность может превышать даже 2-5°. Другой недостаток этой разновидности термостатов — низкая функциональность.

Принцип работы регулятора температуры

Перед тем как сделать окончательный выбор в пользу того или иного прибора, многие будущие владельцы интересуются, как работает термостат. Эти устройства бывают нескольких видов, но, несмотря на различия, принцип работы регулятора температуры одинаков. Он основан на свойстве жидкости (или газа) менять объем в зависимости от температуры. Устройство считывает данные из среды, в которой находится, а затем меняет их, если таковы требования.

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

Все устройства имеют температурный датчик, фиксирующий нагрев воздуха в комнате, или теплоносителя системе. Для регулировки в терморегуляторе предусмотрена рабочая часть. Простейший термостат имеет термическую головку и клапан. В первой находится сильфон — цилиндр, имеющий гофрированные стенки.

В нем находится теплоноситель — специальная жидкость либо газ. Сильфон соединен с клапаном, изменяющим поток, штоком. Когда измеряемые параметры выходят за пределы заданных значений и повышаются, среда начинает расширяться, давление действует на клапан. При остывании воздуха или теплоносителя происходят обратные изменения.

  1. Когда температура воздуха в помещении понижается, сильфон сжимается, поднимая шток. Благодаря этому клапан получает возможность пропускать большее количество теплоносителя.
  2. Если в комнате, наоборот, становится слишком тепло, то сильфон, наоборот, растягивается, а шток опускается, закрывая клапан. Поток теплоносителя уменьшается, а температура понижается.

Эти процессы сменяют друг друга постоянно. Точность работы современных устройств гарантирована. Если модели среднего ценового сегмента реагируют на изменения внешней среды на 1-2°, то более совершенные приборы уменьшают это значение до десятых долей.

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

Несмотря на простоту этих терморегуляторов (или благодаря ей), такие механические конструкции наиболее популярны. Их выбирают для радиаторов в квартирах и для обогревательных систем загородных домов. Однако на точность приборов могут повлиять сквозняки, близкое расположение источников холодного воздуха, прямое попадание солнечных лучей, внезапное повышение или понижение температуры на улице.

Разновидности приборов

Устройства, предназначенные для контроля, отличаются конструкцией, но принцип работы регулятора температуры одинаков. В них могут быть задействованы механические, электронные узлы, либо их комбинации. Сейчас на рынке представлены 4 разновидности компактных комнатных приборов:

  • механические;
  • электронные;
  • программаторы;
  • беспроводные, радиоуправляемые.

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

Модели используются для систем теплых полов, для батарей отопления, для электрообогревателей и котлов.

Механические регуляторы

Это самые простые, практически безотказные модели. Все настройки в них делаются вручную. Терморегуляторы, предназначенные для систем отопления, различаются чувствительной средой, которая находится внутри сильфона. Поэтому механические устройства в продаже можно найти двух видов — жидкостные и газонаполненные. Первые приборы отличаются низкой ценой, вторые — большей надежностью.

У газонаполненных моделей лучшая скорость и плавность реакции на изменение температуры. Другое преимущество — минимальное влияние параметров теплоносителя на газовую среду сильфона терморегулятора. Для жидкостных регуляторов характерна большая точность передачи давления на шток.

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

К минусам механических терморегуляторов относится:

  • необходимость ручной настройки, она часто требует корректировки;
  • некоторая неточность температурных показателей, отличие от реальной температуры воздуха или воды может составлять 4-5°.

Главное преимущество таких регуляторов — приемлемая цена. Долговечность — второй плюс, так как в простейшей конструкции практически нет элементов, которые могут неожиданно выйти из строя. Другие модели имеют аналогичный принцип работы регулятора температуры, однако их оснащение более сложное.

Электронные термостаты

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

Эти устройства стоят дороже, зато они предоставляют хозяевам возможность не беспокоиться о постоянном контроле их работы. В таких регуляторах предусмотрена настройка с плавным изменением параметров в определенное время суток. Им не нужна какая-либо корректировка в случае повышения либо понижения температуры за окном.

Все необходимые показатели можно увидеть на информативном дисплее. Он бывает кнопочным или сенсорным. Для удобства владельцев в комплект входит пульт дистанционного управления. Недостатки моделей — более высокая стоимость, риск поломки электроники.

Регуляторы-программаторы

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

Программируемые термостаты — довольно дорогие устройства, которые имеют несколько режимов и программ. Зато с их помощью возможен постоянный контроль отопительной системы, создание максимально комфортного микроклимата, настройка для экономии энергоресурсов.

Аналоговые приборы имеют систему Wi-Fi, позволяющую отслеживать и контролировать работу через смартфон или планшет. Однако за максимальное удобство придется заплатить большую сумму. Других недостатков, помимо возможного отказа довольно сложного оборудования, у программаторов нет.

Беспроводные модели

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

Радиоуправляемое устройство (программируемый терморегулятор) — совершенство, из-за которого придется смириться в самой высокой ценой прибора. Зато их большое преимущество — отсутствие электрического кабеля. Такое оборудование предназначено для тех владельцев, которые не хотят «портить» интерьер ни проводами, ни дополнительными розетками.

Чаще регулятор температуры необходим для обогревательной системы, особенно если она является единственным или основным источником тепла. В таком случае ее рекомендуют оснащать электронным либо программируемым терморегулятором. Для вспомогательного обогревательного оборудования подойдет любой прибор, имеющий датчик нагрева.

Терморегуляторы и их использование

Ту или иную модель регулятора температуры выбирают в зависимости от условий. Так как поддержание комфортного микроклимата главное их предназначение, о необходимости приборов задумываются, когда не получается эффективно контролировать температуру в помещениях.

Комнатные термостаты для радиаторов

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

В этом случае регулятор температуры воды приобретают для поддержания оптимальной температуры в помещении, так как повысить нагрев теплоносителя он не в состоянии. Зато прибор будет полезен, эффективен для ее понижения. Поскольку разница между моделями для однотрубных и двухтрубных контуров отопления существует, тип системы надо учитывать при монтаже.

Регулятор-ограничитель температуры теплоносителя может иметь ручное, электронное либо программное управление.

  1. Механические устройства немногим отличаются от простейших «коллег» — от вентилей. В зависимости от температуры в комнате такие регуляторы уменьшают или увеличивают поступление воды в радиатор. Долговечность их не всегда привлекательна, потому что контролировать температуру вручную приходится постоянно, но мало кому понравятся лишние хлопоты. Ориентиром тут выступают только личные ощущения дискомфорта — прохлады либо чрезмерного тепла.
  2. Батареи, оснащенные электронными или программируемыми устройствами, наоборот, не требуют к себе повышенного внимания. После выставления параметров нагрева воды такая система начнет работать в автоматическом режиме. Термостат будет перекрывать воду, когда датчик обнаружит превышения показателей, и снова откроет, если в комнате через какое-то время похолодает. Хозяева могут периодически проверять работу, наблюдая за значениями на дисплее.

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

В квартирах многоэтажек более популярными остаются механические модели. Программаторы и электронные термостаты пользуются большим спросом у владельцев домов с водяным автономным отоплением. Некоторые модели оснащаются выносными датчиками. Поскольку приборы могут полностью контролировать работу котлов, приобретение сложных и дорогих термостатов имеет смысл. Такое оборудование, как правило, окупается всего за несколько месяцев отопительного сезона.

Регуляторы температуры для дачи

Дом, в котором не проживают постоянно, или дача также нуждается в терморегуляторе. В таком случае приборы воспрепятствуют замерзанию дома, так как смогут поддерживать минимальную температуру. Она предотвратит замерзание труб и отсыревание стен, а значит, убережет здание от возможного «нашествия» плесневого грибка.

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

Сейчас пользуются спросом инфракрасные обогреватели, безопасные, эффективные и экономичные. Для них обычно выбирают электронные устройства либо программаторы. Если на даче оборудовано водяное отопление, которое работает от котла, то приобретение «умного» терморегулятора тоже оправдано. Он будет включать оборудование, следить за температурой, защищать контур от замерзания.

Правила монтажа теплорегулятора

Принцип работы регулятора температуры не единственное, что необходимо знать будущему владельцу, если он привык во всем полагаться только на себя, и предпочитает устанавливать оборудование самостоятельно. Прибор обязательно устанавливают в месте подачи воды в радиатор. Чугунные модели для установки приборов не подходят. Это не все ограничения, поэтому для эффективной работы прибора перед монтажом необходимо познакомиться еще с несколькими правилами.

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

  1. Вертикальная установка устройства запрещена, потому что в этом случае на его работу будут постоянно влиять восходящие теплые потоки воздуха. Минимальное расстояние от пола до прибора должно составлять 800 мм.
  2. Регулятор температуры не прячут в нише, не закрывают экранами или шторами, так как любые препятствия приведут к некорректным показаниям. Возможный выход — покупка термостата с выносным, дистанционным датчиком. Элемент этот крепят к стене.
  3. Последовательность установки нескольких приборов в жилье различна. В частных домах монтаж всегда начинают с верхних этажей. В квартирах — с тех комнат, где колебания температуры наиболее ощутимы: это помещения, «смотрящие» на юг, кухни, гостиные.
  4. Шаровой кран перед терморегулятором — лучший вариант. Да, терморегулятор может исполнять роль запорного элемента, однако ни к чему подвергать прибор ненужным нагрузкам. Грубая ошибка — монтаж шарового крана между термостатом и радиатором.

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

Есть еще одна особенность: это отличие в монтаже прибора на одно- и двухтрубные системы. В первом случае необходимо установить байпас — отрезок, соединяющий подводящую и отводящую трубы. Цель элемента — обеспечение движения теплоносителя даже при закрытом клапане терморегулятора. Важное условие одно: диаметр байпаса должен быть меньше, чем у подающей трубы. Например: 16 против 20 у стояка.

Терморегулятор всегда монтируют на подающей трубе, вентиль ставят на обратной. Других отличий в установке на разные системы нет. Процесс монтажа устройства стандартный. Прибор имеет резьбу, под которую подбирают фитинги, или нарезают резьбу непосредственно на трубе.

Как настраивают регулятор температуры?

Принцип работы регулятора температуры, виды приборов и их особенности

Принцип работы регулятора температуры, виды приборов и их особенности

Установка оборудования проблем не обещает. Первичная его регулировка происходит на заводе, однако она производится по стандарту, а такие усредненные показатели не могут устроить всех. Перенастройка зависит от вида прибора. Если говорить о простейшей конструкции, то в этом случае последовательность действий такова:

  1. После монтажа закрывают окна и все двери. Если есть вытяжка, то ее включают. Затем открывают клапан полностью — перемещают головку терморегулятора в крайнее левое положение.
  2. Устанавливают термометр в то место комнаты, где необходима максимально комфортная температура. После того как температура повысится примерно на 6-8°, клапан закрывают до упора, вправо.
  3. Потом начинают следить за изменением показаний термометра. Когда будет достигнута идеальная температура, терморегулятор медленно открывают до тех пор, пока не появится шум, пока не начнет прогреваться радиатор. В этот момент останавливаются.

Последнее действие хозяев — запоминание показателей на приборе. Для удобства выставления отличающихся параметров в разных комнатах можно сделать таблицу, имеющую две графы-колонки. Одна с делениями на приборе, другая с температурой, соответствующей им. Чтобы терморегулятор прослужил дольше, его рекомендуют периодически полностью открывать в летний сезон.

Принцип работы регулятора температуры понять нетрудно, он довольно прост. Гораздо сложнее выбрать оптимальный прибор, найти «свою» разновидность. Поскольку ассортимент достаточно широк, в этом случае многое решает вид отопительной системы (автономная или централизованная, основная или вспомогательная). Имеет значение и готовность хозяев променять определенную (и немалую) сумму на устройство, способное обеспечить максимально комфортные условия для проживания.

С одним из термостатов можно познакомиться, посмотрев это видео:

Как правильно отрегулировать температуру в холодильнике

От микроклимата в холодильнике зависит сохранность продуктов и долгосрочность работы самого агрегата. Поэтому вопрос – как отрегулировать температуру в холодильнике – становится чрезвычайно важным для семейного бюджета и пользы здорового питания. Несмотря на то, что все приборы поставляются с инструкцией, не все бытовые моменты там отражены подробно. Да и большинство не всегда внимательно читает инструкции, больше полагаясь на опыт и интуицию.

От микроклимата в холодильнике зависит сохранность продуктов и долгосрочность работы самого агрегата.

От микроклимата в холодильнике зависит сохранность продуктов и долгосрочность работы самого агрегата.

Особенности регулировки температуры в холодильнике

Холодильники разных моделей обладают своими особенностями для изменения уровня подачи холода. Так, этот сложность и тонкость этого процесса зависит от множества факторов:

  • Количества камер
  • Наличия специальных контейнеров
  • Характера продуктов
  • Технологии подачи холода

В современных продвинутых моделях датчиками оборудованы все камеры и можно отрегулировать работу компрессора достаточно тонко. В старых моделях датчик устанавливали только в морозильной камере, так как здесь температурный режим наиболее важен для надежной работы прибора.

В современных продвинутых моделях датчиками оборудованы все камеры и можно отрегулировать работу компрессора достаточно тонко.

В современных продвинутых моделях датчиками оборудованы все камеры и можно отрегулировать работу компрессора достаточно тонко.

Сейчас отдельно продаются специальные термометры для этих целей. С их помощью можно легко контролировать микроклимат в камерах или на отдельных полках. Тем более, что продвинутые модели термометров оснащены еще и показателем влажности.

В современных продвинутых моделях датчиками оборудованы все камеры и можно отрегулировать работу компрессора достаточно тонко.
В современных продвинутых моделях датчиками оборудованы все камеры и можно отрегулировать работу компрессора достаточно тонко.

От того, как выставлена температура зависит и количество потребляемой мощности, и нагрузка на компрессор. Чем ниже температура – тем сильнее агрегат морозит – тем больше ему требуется электроэнергии, и тем больше его износ.

От того, как выставлена температура зависит и количество потребляемой мощности, и нагрузка на компрессор.

От того, как выставлена температура зависит и количество потребляемой мощности, и нагрузка на компрессор.

Износ изделия усиливается и при слишком теплой температуре морозилки. Постоянно тающий лед портит ее. Агрегат начинает вырабатывать больше холода, чтобы понизить градус и как следствие в камере нарастает лед еще больше. Такое часто бывает при неплотно закрытой двери морозилки.

Постоянно тающий лед портит морозильную камеру

Постоянно тающий лед портит морозильную камеру

Общие правила температурного режима для холодильника

Стандартные агрегаты делятся на две камеры – холодильную и морозильную. В первой продукты храниться в охлажденном виде и готовы к быстрому употреблению или готовке, во второй – в замороженном. В замороженном продукты откладываются на долгий срок хранения и перед приготовлением требуют разморозки.

Стандартные агрегаты делятся на две камеры – холодильную и морозильную.

Стандартные агрегаты делятся на две камеры – холодильную и морозильную.

Оптимальная температура в холодильнике

Оптимальный уровень холода для хранения продуктов – от 2 до 5 градусов, для отдельных видов продуктов – до 8 градусов или даже до 10. Если температура выставлена слишком низкой – это создает ряд неудобств:

  • Продукты теряют свои вкусовые свойства
  • Портиться структура овощей и фруктов
  • Приходится тратить силы и время на разморозку
  • При разморозке снова страдают вкусовые свойства
  • Необходимость разморозки создает спешку и портит нервы

Повышение градуса микроклимата в камере запускает активное размножение гнилостных и болезнетворных бактерий, плесени и процессы брожения. Овощи, фрукты и зелень быстро теряют свою свежесть, вянут и подгнивают. Соки постепенно начинают превращаться в вино, а сыр покрывается нездоровым пушком.

Повышение градуса микроклимата в камере запускает активное размножение гнилостных и болезнетворных бактерий, плесени и процессы брожения.

Повышение градуса микроклимата в камере запускает активное размножение гнилостных и болезнетворных бактерий, плесени и процессы брожения.

Даже диапазон от 2 до 8 градусов является очень и общим для продуктов. Овощи, фрукты, полуфабрикаты, мучные изделия, молочные изделия, соки, яйца, мясо и рыба – все это требует разного температурного режима.  

Овощи, фрукты, полуфабрикаты, мучные изделия, молочные изделия, соки, яйца, мясо и рыба – все это требует разного температурного режима.  

Овощи, фрукты, полуфабрикаты, мучные изделия, молочные изделия, соки, яйца, мясо и рыба – все это требует разного температурного режима.

В большинстве изделий температура ограничивается диапазоном от 2 до 8 градусов, в некоторых и того уже – от 2 до 5. Модели с фреш-зоной имеют диапазон до 10 градусов. В таких зонах сохранность пищи достигается благодаря дополнительной ионизации воздуха.

Модели с фреш-зоной имеют диапазон до 10 градусов.

Модели с фреш-зоной имеют диапазон до 10 градусов.

Основное правило в распределении пищи такое: чем более скоропортящиеся продукты, тем ниже температура.

Таблица хранения пищи

Температура храненияВид продуктов
1 -2 градусаРыба, открытый майонез, твердые сорта сыра
2 – 4 градусаКрасное мясо, мягкие сорта сыра, майонез
4 – 5 градусовПтица, яйца, молоко, сливки
5 – 6 градусовСвежие морепродукты, супы, полуфабрикаты, колбасы, сосиски, масло, кефир, плавленый сыр, закрытые упаковки майонеза
7- 8 градусовМучные изделия, овощи, фрукты средних широт, соленая рыба, суши, готовые блюда, грибы
8-10 градусов (зона фреш)Фрукты южных широт (бананы, авокадо, киви, манго и др), зелень

Распределение холода

В больших объемных агрегатах температура распределяется по внутреннему объему неравномерно. Особенно сильно заметна разность температур на полках в холодильной камере. На разных полках значения градусов будут отличаться, даже в камере небольшого объема советского холодильника.

В больших объемных агрегатах температура распределяется по внутреннему объему неравномерно

В больших объемных агрегатах температура распределяется по внутреннему объему неравномерно

Распределение тепла зависит от расположения компрессора, от конструктивных особенностей изделия, от объема камер и от расположения морозилки. В старых приборах морозилка располагалась сверху и холод шел от нее вниз. Поэтому на верхней полке могло быть так холодно, что продукты покрывались инеем.

Распределение тепла зависит от расположения компрессора, от конструктивных особенностей изделия, от объема камер и от расположения морозилки.

Распределение тепла зависит от расположения компрессора, от конструктивных особенностей изделия, от объема камер и от расположения морозилки.

В современных моделях холод в камеры поставляется автономно. В холодильную камеру он поступает либо в верхней части, либо в середине. Первый вариант наиболее предпочтителен, так как в этом случае тепло растет плавно к низу. Продукты расположить очень просто: сверху-вниз согласно правилам хранения.

Распределение тепла зависит от расположения компрессора, от конструктивных особенностей изделия, от объема камер и от расположения морозилки.
Распределение тепла зависит от расположения компрессора, от конструктивных особенностей изделия, от объема камер и от расположения морозилки.

Во втором варианте тепло распределяется по нестандартной схеме. В середине и чуть ниже наиболее холодный воздух, выше – наиболее теплый, а на нижних полках средний.  

В наиболее продвинутых моделях можно регулировать холод в каждом отдельном отсеке камеры

В наиболее продвинутых моделях можно регулировать холод в каждом отдельном отсеке камеры

В наиболее продвинутых моделях можно регулировать холод в каждом отдельном отсеке камеры. Как правило, такие модели оборудованы фреш-зонами с дополнительной ионизацией воздуха.

Морозилка

В морозилке холод распределяется как правильно равномерно. Пакеты и контейнеры по полкам раскладываются больше с точки зрения удобства.  

В морозилке холод распределяется как правильно равномерно.

В морозилке холод распределяется как правильно равномерно.

Важно! Продукты в замороженном виде сохраняют свои свойства одинаково при любой температуре ниже 15 градусов. Поэтому разницы их при -15 или -25 никакой нет. А значит и нет смысла лишний раз нагружать холодильник. Именно по этой же причине в морозилке нет градации распределения холода.

В морозилке холод распределяется как правильно равномерно.
В морозилке холод распределяется как правильно равномерно.

Измерение температуры

Каждый холодильник оборудован регуляторами температуры или термостатами. В обычных моделях это несколько уровней показателей на передней панели холодильника. В более продвинутых – показания даются в цифрах, иногда присутствуют внутренние термометры. Термометр всегда устанавливается и в морозилку. Это устройство можно приобрести и отдельно – так очень удобно измерять точные показатели на каждой полке. 

В морозилке холод распределяется как правильно равномерно.
В морозилке холод распределяется как правильно равномерно.

Есть и народные способы измерений – с помощью уличного термометра в стакане воды. Его оставляют на 2-3 часа на внутри камеры. Оптимальные показатели в 3-4 градуса. Выше – уже слишком тепло, а ниже – слишком холодно.

Народные способы измерения температуры в холодильнике

Народные способы измерения температуры в холодильнике

Многие при первом включении прибора даже не задумываются о регулировки микроклимата внутри. Другие подходят достаточно интуитивно – прокручивая ручку термостата на средние позиции. Однако регулировка холода – это тонкий и сложный процесс.

Народные способы измерения температуры в холодильнике
Народные способы измерения температуры в холодильнике

Важно! В зависимости от температуры в помещении, от частоты пользования холодильником, от его загруженности уровень холода внутри также необходимо корректировать.

Как регулировать температуру в разных марках холодильников

Каждый бренд пытается привнести что-то свое в конструкцию холодильника и сделать пользование им более удобным. Поэтому конструкторы разрабатывают свои варианты регулировок и у разных марок агрегатов эти функции могут различаться.

Стинол – имеет для каждого отсека два независимых регулятора температуры в холодильнике. Каждый регулятор имеет по пять делений. При этом термостат имеет световой индикатор работы прибора. В случае необходимости убавить температуру в холодильнике он даст об этом знать.

Народные способы измерения температуры в холодильнике
Народные способы измерения температуры в холодильнике

LG имеет специальные панели управления для каждой камеры, на которых удобно устанавливать нужный режим.

Народные способы измерения температуры в холодильнике
Народные способы измерения температуры в холодильнике

Indesit – регулирование холода осуществляется плавно, ступенчатых значений нет. Уровень поворота ручки регулирует количество тепла в камерах.

Народные способы измерения температуры в холодильнике
Народные способы измерения температуры в холодильнике

Атлант, Аристон – модели имеют регулируемые ролики у каждой камеры, разделенные на пять уровней.

Народные способы измерения температуры в холодильнике
Народные способы измерения температуры в холодильнике

Bosh – для отсеков регулирование режимов раздельное. На каждом устройстве сначала нажимается кнопка установки режимов и затем выставляется нужное значение. Для холодильного отсека от 1 до 7 градусов, для морозильного – от -14 до -25 градусов. В отдельных моделях есть режим быстрого охлаждения и быстрой заморозки.

Народные способы измерения температуры в холодильнике
Народные способы измерения температуры в холодильнике

Samsung – для разных отсеков уровень холода устанавливается отдельно. Сначала нажимается кнопка установки и затем выбирается значение. Диапазон значений для холодильной части – от 1 до 7 градусов, для морозильной от -14 до -25. Есть режим автоматической быстрой заморозки при включении прибора.

Народные способы измерения температуры в холодильнике
Народные способы измерения температуры в холодильнике

Gorenje – регулировка осуществляется плавно поворотом ручки. Есть отдельный режим ECO, который плавно охлаждает пищу.

Народные способы измерения температуры в холодильнике
Народные способы измерения температуры в холодильнике

Liebherr – продвинутая марка, в которой управление подачей холода осуществляется электронно и по отдельности в каждой камере. Есть много удобных автоматических настроек. Например, CoolPlus меняет режим работы прибора в зависимости от резких изменений тепла во внешней среде.

Liebherr – продвинутая марка, в которой управление подачей холода осуществляется электронно и по отдельности в каждой камере

Liebherr – продвинутая марка, в которой управление подачей холода осуществляется электронно и по отдельности в каждой камере

Есть режимы быстрого охлаждения продуктов в морозилке, благодаря чему они замораживаются более щадяще и меньше теряют в своих вкусовых свойствах. SmartFreeze – особая функция, которая замораживает продукты не только за счет понижения температуры, но и за счет циркуляции воздуха.

Liebherr – продвинутая марка, в которой управление подачей холода осуществляется электронно и по отдельности в каждой камере
Liebherr – продвинутая марка, в которой управление подачей холода осуществляется электронно и по отдельности в каждой камере

Рекомендации по регулировке температуры

Помимо общих правил регулировки, подробно указанных в инструкции каждого изделия и устанавливаемых на панелях управления, важно еще и вручную следить за микроклиматом внутри прибора. Так существуют основные признаки неправильной работы агрегата:

  • Резкое увеличение инея в морозильной камере
  • Большое количество инея в морозилке
  • Образование наледи, сосулек в морозилке
  • Быстрое гниение продуктов в холодильном отсеке
  • Образование плесени
  • Появление неприятного запаха
  • Появление луж под холодильником

Все эти признаки говорят о том, что либо была произведена неправильная регулировка, либо прибор просто неисправен. Выяснить это просто: устранить все признаки неправильной работы и скорректировать режим работы.

Liebherr – продвинутая марка, в которой управление подачей холода осуществляется электронно и по отдельности в каждой камере
Liebherr – продвинутая марка, в которой управление подачей холода осуществляется электронно и по отдельности в каждой камере

Если проблема проявляется и дальше, более того если прибор издает посторонние звуки или в определенных частях перегревается слишком сильно – эксплуатировать его нельзя. Следует обязательно отключить от сети и вызвать мастера по ремонту. В противном случае существует опасность пожара и лишиться можно уже не только холодильника.

Liebherr – продвинутая марка, в которой управление подачей холода осуществляется электронно и по отдельности в каждой камере
Liebherr – продвинутая марка, в которой управление подачей холода осуществляется электронно и по отдельности в каждой камере

Если же регулировка температуры произведена грамотно и верно и впоследствии корректируется в зависимости от обстоятельств, то такой прибор будет служить долго и надежно.

Если регулировка температуры произведена грамотно и верно и впоследствии корректируется в зависимости от обстоятельств, то такой прибор будет служить долго и надежно.

Если регулировка температуры произведена грамотно и верно и впоследствии корректируется в зависимости от обстоятельств, то такой прибор будет служить долго и надежно.

Основные правила регулировки температуры в холодильнике, полезные советы

модулей контроля температуры | RS Components

Модули контроля температуры | RS компоненты

Модули контроля температуры

Модули контроля температуры — это аппаратные компоненты, которые используются в устройствах контроля температуры для повышения их функциональности. Они полезны в ситуациях, когда требуется, чтобы заданная температура поддерживалась стабильно, и могут быть легко установлены в качестве устройств Plug and Play.

Для чего используются модули контроля температуры?

Модули контроля температуры используются в различных отраслях промышленности для управления производственными процессами или процессами. Некоторые распространенные области применения модулей контроля температуры включают обработку пищевых продуктов, банки крови, упаковочные машины и термоформовочные машины.

Вы найдете модули контроля температуры в печах, а также в приложениях для термообработки в котлах, печах и теплообменниках.Они также используются в сфере здравоохранения в лабораторном и испытательном оборудовании, холодильных установках и инкубаторах.

Типы модулей контроля температуры

Модули контроля температуры включают в себя: широкий ассортимент продукции от контроллеров температуры и коммуникационных карт до дополнительных модулей ввода и вывода. Карты связи, например, могут использоваться для расширения функциональности цифрового выхода цели вкл / выкл регуляторы температуры .


Наш веб-сайт использует файлы cookie и аналогичные технологии, чтобы предоставить вам лучший сервис при поиске или размещении заказа, в аналитических целях и для персонализации нашей рекламы для вас.
Вы можете изменить настройки файлов cookie, ознакомившись с нашей политикой использования файлов cookie. В противном случае мы будем считать, что вы согласны с использованием файлов cookie.

ОК, я понимаю

,ОСНОВНЫЕ РЕГУЛЯТОРЫ ТЕМПЕРАТУРЫ

— Wavelength Electronics

Источник тока регулятора температуры: Одним из ключевых разделов регулятора температуры является регулируемый двунаправленный источник тока. Он также может быть известен как выходной этап. Этот раздел реагирует на раздел «Система управления» подачей тока на температурный привод (термоэлектрический или резистивный нагреватель). Направление тока имеет решающее значение для термоэлектричества. На блок-схеме термоэлектрика привязана между двумя контактами на контроллере.Для резистивного нагревателя может потребоваться специальная проводка, чтобы ограничить протекание тока через резистивный нагреватель только в одном направлении.

Система управления : Пользовательские входы включают предельное заданное значение (в терминах максимального тока, допустимого для термоэлектрического или резистивного нагревателя) и рабочее заданное значение. Кроме того, если требуется удаленное заданное значение, обычно доступен удаленный ввод заданного значения.

  • Уставка : это аналоговое напряжение в системе.Он может быть создан с помощью комбинации встроенной настройки тримпота и входа удаленного задания уставки. В некоторых случаях эти входы суммируются. Некоторые действуют независимо.
  • Прецизионный датчик смещения Источник тока: Этот источник тока управляет датчиком температуры на известном уровне, что делает фактическое напряжение датчика стабильным и точным. Напряжение на датчике определяется законом Ома: V = I * R, где V — напряжение, I — ток, а R — сопротивление датчика. Напряжение ограничено максимальным и минимальным значением (указанным в техническом задании регулятора температуры).Наименьший возможный ток должен использоваться для минимизации эффекта самонагревания. Термистор нагревается при более высоких уровнях тока и ложно сообщает о более высокой температуре.
  • Ошибка генерации : Чтобы узнать, как работает система, фактическую температуру сравнивают с заданной температурой. Эти два напряжения вычитаются, и результат называется «Ошибка». Выходной сигнал регулируемого источника тока будет изменяться, чтобы поддерживать постоянный сигнал обратной связи по температуре.
  • Система ПИД-управления : преобразует сигнал ошибки в сигнал управления для источника регулируемого тока. Более подробное обсуждение ПИД-регулирования можно найти в Технической ноте TN-TC01
  • .

  • Предельная цепь : Один из способов повредить термоэлектрический элемент — пропустить через него слишком большой ток. В каждой спецификации привода указан максимальный рабочий ток. Превышение этого тока приведет к повреждению устройства. Чтобы избежать этого, в регулятор температуры включена предельная цепь.Пользователь определяет максимальную настройку, и выходной ток удерживается от превышения этого уровня. Большинство концевых цепей ограничивают ток на максимальном уровне и продолжают работать.
  • Функции безопасности : термоэлектрические и резистивные нагреватели чувствительны к перегрузке, но они устойчивы к быстрым изменениям тока или напряжения. Функции безопасности могут включать индикатор состояния «теплового разгона». Температурные пределы — как высокие, так и низкие — также могут быть доступны для запуска индикаторов или отключения выходного тока.

Питание : Необходимо подать питание на управляющую электронику и источник тока. Это может принимать форму источника питания постоянного тока (некоторые драйверы используют входы с одним источником питания, другие — с двумя источниками питания) или разъем и кабель переменного тока. В некоторых случаях, когда для термоэлектрического или резистивного нагревателя требуется более высокое напряжение, могут быть доступны отдельные входы источника постоянного тока для питания управляющей электроники от источника низкого напряжения +5 В и термоэлектрического источника от источника более высокого напряжения.

В чем разница между инструментом, модулем и компонентом?

Обычно цена, набор функций и размер. Прибор обычно имеет лицевую панель с ручками и кнопками регулировки, а также дисплей для отслеживания датчика. Все это может быть автоматизировано с помощью компьютерного управления через USB, RS-232, RS-485 или GPIB. Прибор обычно питается от переменного тока, а не от источника постоянного тока. По нашему определению, модуль не включает дисплей или источник питания и имеет минимальные необходимые настройки.Для контроля состояния вольтметр измеряет напряжение, а в техническом описании модуля предусмотрена передаточная функция для преобразования напряжения в фактическое сопротивление датчика. Лист данных датчика преобразует сопротивление датчика в температуру. Некоторые устройства выделяют память для калибровки отклика датчика. Компонент подвергается дополнительной демонтажу без движущихся частей. Внешние резисторы или конденсаторы устанавливают рабочие параметры. Функции безопасности являются общими для всех трех форм. Обычно модули могут располагаться на столе или быть интегрированы в систему с помощью кабелей.Компоненты устанавливаются непосредственно на печатную плату (PCB) с помощью штырьковых или поверхностного монтажа (SMT). Два ряда контактов называются DIP-упаковкой (двойной в линию), в то время как один ряд контактов называется SIP-упаковкой (один в линию).

Различные готовые контроллеры доступны как в приборах, так и в комплектах OEM. Некоторые поставщики стирают границы, например, предлагая USB-управление компонентами в качестве мини-инструментов.

Комплектация компонентов и модулей включает в себя надлежащий теплоотвод элементов схемы (или руководство о том, как устройство должно быть теплоотводящим) и обычно включает в себя соответствующую проводку к термоэлектрическому элементу, датчику и источнику питания.Инструменты включают в себя шнур питания и доступ пользователя внутрь корпуса не требуется.

Типичная терминология:

Термоэлектрик: Это устройство характеризуется двумя керамическими пластинами, которые связывают металлические соединения, сделанные из двух разнородных металлов. Если ток протекает через соединение разнородных металлов, тепло генерируется на одной стороне, а поглощается на другой. При пропускании тока через термоэлектрик тепло передается от одной керамической пластины к другой.Направление тока определяет, какая пластина становится «горячей», а какая «холодной» относительно друг друга. Реверсирование тока немедленно отменяет эффект. Регулятор температуры работает, оптимально управляя величиной и направлением тока через соединение, чтобы поддерживать устройство, прикрепленное к «холодной» стороне, при фиксированной температуре. Термоэлектрики могут накладываться друг на друга, чтобы создать более широкий перепад температур. Они называются многоступенчатыми или каскадными термоэлектриками. Термоэлектрик также может преобразовывать перепад температур в электричество.Это называется эффектом Зеебека. Термоэлектрический также известен как термоэлектрический охладитель, устройство Пельтье или твердотельный тепловой насос.

Thermoelectric

Q MAX: Спецификация термоэлектрика. Это максимальная мощность, которую он может поглотить в холодную тарелку.

Delta T MAX: Спецификация термоэлектрика. Это максимальный перепад температур, который может быть создан термоэлектриком между его пластинами. Он указывается в IMAX и VMAX и для определенной температуры «горячей» пластины.

I MAX и V MAX: Максимальные значения тока и напряжения термоэлектрического элемента соответственно. Не превышайте эти условия эксплуатации.

Резистивный нагреватель: Обычно эти нагреватели являются гибкими с резистивным элементом, зажатым между двумя изоляторами. Материалы резистивного элемента и изоляторов сильно различаются в зависимости от применения. Некоторые требуют переменного тока, а не постоянного тока, который вырабатывает типичный регулятор температуры. В резистивном нагревателе поток тока в любом направлении выделяет тепло; следовательно, нет активной функции охлаждения.Охлаждение достигается путем сброса тока до нуля и позволяя теплу рассеиваться в окружающей среде. Стабильности, как правило, не так хороши, как те, которые достигаются с помощью термоэлектрика, если только рабочая температура значительно не выше, чем температура окружающей среды.

Resistive Heater

Температура окружающей среды: Обычно это температура воздуха / условия окружающей среды вокруг груза.

Отключено: Когда выходной ток отключен, все защитные механизмы обычно устанавливаются в исходное состояние при включении, и только термоэлектрический ток подается только на остаточный ток утечки.

DVM: Цифровой вольтметр, измеритель, который контролирует напряжение.

Амперметр : Метр, который контролирует ток.

ESD: Электростатический разряд. «Зап», когда чувствуешь, что пересекаешь ковер, а прикосновение к металлической дверной ручке — самый распространенный пример ОУР. Лазерные диоды чувствительны к электростатическим разрядам. «Зап», которого человек не чувствует, все же достаточно, чтобы повредить лазерный диод. При обращении с лазерным диодом или другим чувствительным к электростатическому разряду электронным оборудованием следует соблюдать надлежащие меры предосторожности в отношении электростатического заряда

Внутреннее рассеивание мощности: При использовании линейного источника тока часть энергии, поступающей от источника питания, поступает в термоэлектрический или резистивный нагреватель, а часть используется в регуляторе температуры. Максимальное внутреннее рассеивание мощности контроллера — это предел, после которого возможно тепловое повреждение внутренних электронных компонентов. Проектирование системы контроля температуры включает в себя выбор напряжения питания. Если для управления термоэлектриком с напряжением 6 В выбрано напряжение 28 В, то на выходной каскад регулятора температуры (или источник тока) будет сброшено 22 В.Если драйвер работает на 1 А, внутренняя рассеиваемая мощность будет V * I или 22 * ​​1 = 22 Вт. Если внутренняя мощность рассеивания составляет 9 Ватт, компоненты источника тока будут перегреваться и подвергаться постоянному повреждению. Wavelength предоставляет онлайн-калькуляторы безопасной рабочей области для всех компонентов и модулей, чтобы упростить этот выбор конструкции.

Соответствие Напряжение: Источник тока связан с падением напряжения на нем. Напряжение соответствия — это напряжение источника питания за вычетом этого внутреннего падения напряжения.Это максимальное напряжение, которое может быть подано на термоэлектрический или резистивный нагреватель. Обычно указывается при полном токе.

Предел тока: В паспорте термоэлектрического или резистивного нагревателя будет указан максимальный ток при температуре окружающей среды. Выше этого тока устройство может быть повреждено. При более высоких температурах это максимальное значение будет уменьшаться. Предел тока — это максимальный ток, который будет доставлять источник тока. Предел тока может быть установлен ниже термоэлектрического максимального тока и использоваться в качестве инструмента для минимизации внутреннего рассеивания мощности регулятора температуры.При более высоком пределе тока термоэлектрик будет передавать больше тепла быстрее, поэтому время на температуру можно сократить (если система управления оптимизирована, чтобы избежать перерегулирования и гудения).

Нагрузка: Для регулятора температуры нагрузка состоит из привода температуры (термоэлектрический или резистивный нагреватель) и датчика температуры.

ACTUAL TEMP MON: Это аналоговое напряжение, пропорциональное сопротивлению датчика температуры. Передаточные функции к сопротивлению представлены в паспортах отдельных контроллеров.Преобразование сопротивления в температуру использует передаточные функции из таблицы датчиков. Это также называется ACT T Monitor или Temperature Monitor.

VSET: Это общий термин, используемый для обозначения входного сигнала дистанционного задания уставки. V обозначает сигнал напряжения, а SET обозначает его назначение: уставка системы управления. Его также можно назвать MOD, MOD IN или ANALOG IN.

Каковы типичные спецификации и как их интерпретировать для моего приложения?

В настоящее время каждый поставщик проводит свое собственное тестирование, и нет стандарта для измерения.После того как вы определили решение для своего приложения, очень важно протестировать продукт в своем приложении, чтобы проверить работу. Вот некоторые из определений, которые использует Wavelength и как интерпретировать спецификации в вашем дизайне.

Входное сопротивление : Указано для аналоговых входов напряжения, таких как VSET или MOD IN. Он используется для расчета того, какой ток должен генерировать внешний генератор сигналов. Например, если VSET управляется ЦАП с максимальным напряжением 5 В и входным сопротивлением 20 кОм, ЦАП должен иметь напряжение не менее 5 В / 20000 Ω или 0.25 мА.

Стабильность: Для регулятора температуры стабильность системы обычно является критической характеристикой. Испытания на длину волны с использованием термисторов, потому что они предлагают самое высокое изменение сопротивления на градус C. Испытательная нагрузка также хорошо спроектирована, с датчиком, расположенным рядом с контролируемым устройством, и термоэлектрическим, радиатором надлежащего размера и компонентами, соединенными с высококачественной термопастой. минимизировать тепловое сопротивление между ними. Стабильность дана в Кельвинах или Цельсиях.Типичная стабильность может составлять всего 0,001 ° C. Более подробное техническое примечание TN-TC02, описывающее испытания, доступно онлайн.

Диапазон рабочих температур: Электроника разработана для правильной работы в заданном температурном диапазоне. Вне минимальных и максимальных температур может произойти повреждение или поведение может измениться. Рабочий диапазон, указанный в параметре Wavelength, связан со спецификацией максимального внутреннего рассеяния мощности. При определенной температуре окружающей среды (обычно 35 ° C или 50 ° C) максимальная внутренняя рассеиваемая мощность уменьшается до нуля при максимальной рабочей температуре.

Диапазон рабочего напряжения: В некоторых терморегуляторах могут использоваться два напряжения питания — одно для питания управляющей электроники (VDD) и одно для обеспечения более высокого напряжения соответствия для термоэлектрического или резистивного нагревателя (VS). Как правило, управляющая электроника работает при более низких напряжениях: от 3,3 до 5,5 В. Превышение этого напряжения может повредить элементы в секциях управления или питания. Источник тока (или выходной каскад) предназначен для более высоких напряжений (например, 30 В с терморегуляторами семейства PTC).Эту спецификацию необходимо рассматривать в сочетании с током привода и мощностью, подаваемой на нагрузку, чтобы убедиться, что проект не превышает спецификацию максимального внутреннего рассеивания мощности. Например, PTC5K-CH рассчитан на работу до 5 А и может принимать вход 30 В. Максимальное внутреннее рассеивание мощности составляет 60 Вт. Если для питания термоэлектрика, который падает на 4 В, используется напряжение 28 В, напряжение 24 В будет падать на PTC5K-CH. При 24 В максимальный ток в безопасном рабочем диапазоне составляет менее 60/24 или 2.5 ампер. Перемещение больше этого тока приведет к перегреву компонентов выходного каскада и необратимому повреждению контроллера. Максимальные значения тока и напряжения связаны, не достижимы независимо.

Монитор против фактической точности: Сигнал ACT T MON представляет собой аналоговое напряжение, пропорциональное сопротивлению датчика. Точность фактического сопротивления относительно измеренных значений указана в технических паспортах водителя. Длина волны использует откалиброванное, отслеживаемое NIST оборудование для обеспечения этой точности спецификации.

Отдельное заземление для монитора и питания: Одно мощное заземление предназначено для подключения к источнику питания на любом контроллере температуры. Несколько сигналов низкого тока расположены среди сигналов монитора, чтобы минимизировать смещения и неточности. Хотя заземление с высоким и низким током связано внутри, для достижения наилучших результатов используйте заземление с низким током на любом мониторе.

Линейные или импульсные источники питания для компонентов и модулей: Линейные источники питания являются относительно неэффективными и большими по сравнению с импульсными источниками питания.Они, однако, с низким уровнем шума. Если шум важен для вашей системы, вы можете попробовать импульсный источник питания, чтобы увидеть, влияет ли частота переключения на производительность в любой части системы.

Thermal Runaway: Если термоэлектрик отводит тепло от устройства (охлаждая его до температуры ниже температуры окружающей среды), это тепло должно рассеиваться из системы. Дополнительное тепло от неэффективности термоэлектрика также должно рассеиваться. Если конструкция радиатора адекватная, отводится достаточное количество тепла, чтобы устройство могло поддерживать температуру ниже температуры окружающей среды.Однако, если конструкция является предельной, тепло остается в нагрузке, и температура датчика повышается, а не остается на желаемой температуре. Система управления реагирует, пропуская больше охлаждающего тока через термоэлектрик. Это приводит к большему тепловыделению в нагрузке и постоянному повышению температуры датчика. Это называется «тепловой побег». Температура системы не контролируется, а определяется неадекватным отводом тепла в окружающую среду.

Wavelength разрабатывает терморегуляторы и производит их на заводе в Бозмане, штат Монтана, США.Чтобы просмотреть список текущих настроек контроллера температуры, нажмите здесь.

Полезные сайты:

Что такое термоэлектрик?

Что такое термистор?

Внешние ссылки предоставляются в справочных целях. Wavelength Electronics не несет ответственности за содержание внешних сайтов.

,

Temperature Control System — Перевод на французский — примеры английский


Эти примеры могут содержать грубые слова, основанные на вашем поиске.


Эти примеры могут содержать разговорные слова на основе вашего поиска.

легкая портативная система контроля температуры , которая включает в себя подходящие одноразовые терапевтические прокладки

система контроля температуры транспорта , обладающая повышенной теплоемкостью при низкой температуре окружающей среды

Это исключает необходимость в системе контроля температуры .

Данное изобретение относится к системе контроля температуры для лазерных диодов, особенно для использования в оборудовании оптической связи.

центральный венозный катетер с системой контроля температуры

Предусмотрена система контроля температуры 9109 мобильного устройства.

катетер для центральной венозной линии с двумя баллонами система контроля температуры

Система контроля температуры для кожной фотодинамической терапии

Патрон включает нагреватель, управляемый системой контроля температуры .

Другой аспект изобретения относится к холодильному хранилищу, содержащему соответствующую систему контроля температуры .

система контроля температуры содержит насосную скважину для хранения подземной воды

программируемая система контроля температуры для бассейнов и спа

Система контроля температуры в холодильной установке

Даже если эти сети насыщены, система контроля температуры остается работоспособной.

Изобретение обеспечивает реакционный сосуд [12] и систему контроля температуры для проведения теплообменных химических реакций, таких как амплификация нуклеиновых кислот.

L’invention porte sur un réacteur [12] и система регулирования температуры ассоциация пилотов-экспериментаторов экспериментов по изменению терминологии и амплификации ядерных бомбардировок.

система контроля температуры использует эффекты усиления гидрогидродинамического теплообмена

Система контроля температуры предназначена для использования с гибридным двигателем (11).

Изобретение исключает использование водяной рубашки с системой контроля температуры для цилиндрических пробоотборников.

система контроля температуры содержит корпус

комплект деталей, включая катетер для центральной венозной линии, имеющий систему контроля температуры

,