Сварка взрывом труб: Сварка взрывом различных металлов: технология, схема

Содержание

Сварка взрывом | Сварка и сварщик

Сварка взрывом является разновидностью сварки давлением. Для совместной пластической деформации контактирующих слоев металла используется кинетическая энергия соударения движущейся детали, разогнанной до большой скорости энергией взрыва, и неподвижной детали, установленной на жесткой площадке. Скорость движения ударяющей детали должна к моменту соударения достигать нескольких сотен метров в секунду. В зоне соударения металл течет как жидкость и сливается в одно целое. Заряд взрывчатого вещества, масса которого составляет 10…20% массы детали, вызывает ее перемещение со сверх звуковой скоростью.

1 — опорный фундамент; 2, 3 — свариваемые детали; 4 — взрывчатое вещество; 5 — детонатор; h — зазор между деталями; α — угол установки деталей.
Рисунок 1 — Схема сварки взрывом

Схема сварки взрывом представлена на рис. 1. Неподвижную деталь 2 для увеличения массы укладывают на жесткую массивную плиту 1. Ударяющий лист металла 3 располагают под углом α=3…10° к поверхности детали 2 с зазором h. По поверхности листа 3 равномерным слоем укладывают взрывчатое вещество (ВВ) 4; в качестве которого используют аммонал, тол, гексоген и другие. На нижнем крае листа 3 располагают детонатор 5. После инициирования детонатором 5 взрыва заряда ВВ 4 по заряду с огромной скоростью распространяется плоская детонационная волна. Скорость детонации D=2000…8000 м/с. Позади движущейся детонационной волны остаются продукты взрыва. Давление газообразных продуктов взрыва составляет 10…20 ГПа. Вследствие такого давления части верхней детали, расположенные в зоне действия продуктов сгорания, последовательно вовлекаются в ускоренное движение в направлении к нижней детали, соударяются с ней со скоростью Vс. Та часть верхней пластины, где детонация ВВ еще не произошла, находится в исходном положении, в результате чего верхняя пластина в процессе сварки изгибается, причем точка изгиба перемещается по поверхности пластины со скоростью детонации ВВ.

Так как при соударении метаемая деталь подходит к неподвижной детали под некоторым углом, то наряду с нормальной составляющей Vn скорости соударения Vс, которая вызывает большое давление в зоне сварки и совместную пластическую деформацию поверхностных слоев, существует тангенциальная составляющая Vt скорости Vс, приводящая к деформации сдвига, вследствие чего резко возрастает деформация сдвига и образование металлических связей.

Возникновение прочной металлической связи даже при наличии большого давления невозможно, если в процессе сварки свариваемая поверхность деталей не очищена. При соударении в углу смыкания деталей возникает кумулятивная воздушная струя. Скорость струи достигает 5000…7000 м/с, и поэтому она оказывает большое давление на металл. Волновая конфигурация границы раздела металла при сварке взрывом, как правило, легко обнаруживается при исследовании структуры соединения. Граница соединения поперек пластин представляет собой почти прямую линию.

аб

а — вдоль пластины; б — поперек пластины.
Рисунок 2 — Вид границы раздела металлов при сварке взрывом

Особенности процесса сварки взрывом

Сварное соединение образуется в течение миллионных долей секунды, то есть практически мгновенно. Сварное соединение возникает вследствие образования металлических связей при совместном пластическом деформировании свариваемых поверхностей металла. Малая продолжительность сварки предотвращает возникновение диффузионных процессов. Эта особенность позволяет сваривать металлы, которые при обычных процессах сварки с расплавлением металлов образует хрупкие интерметаллические соединения, делающие швы непригодными к эксплуатации.

При сварке взрывом можно получать соединения неограниченной площади. При этом процесс сварки осуществляется тем проще, чем больше отношение площади соединения к толщине метаемой части металла. Осуществлены соединения площадью 15…20 м2.

1 – детонатор; 2 – заряд ВВ; 3 – метаемые пластины; 4 – неподвижная пластина; 5 – подложка
Рисунок 3 — Сварка трех- и много- слойных плоских соединений одновременно одним зарядом ВВ
1 – детонатор; 2 – заряд ВВ; 3 – соединяемые трубы
Рисунок 4 — Сварка взрывом стыка труб
1 — детонатор 2-металлическая призма направления детонационной волны; 3-заряд ВВ; 4-облицо вываемый лист; 5-метаемые листы; 6-центрирующее основание.
Рисунок 5 — Приварка двух наружных слоев к листу взрывом одной точки
1 – детонатор; 2 – металлический конус для направления детонационной волны; 3 – заряд ВВ; 4 – метаемая труба; 5 – облицовываемый цилиндр; 6 – грунт.
Рисунок 6 — Наружная облицовка цилиндрических тел кольцевым зарядом ВВ

Наряду со сваркой листовых деталей применяются и другие технологические схемы, представленные на рисунках 3 — 7.

Сварка взрывом начинает использоваться для стыковых нахлесточных соединений некоторых готовых элементов конструкций. Перспективное применение сварки взрывом для соединения армированных металлов, получения из порошков монолитных металлов и сплавов

1-детонатор; 2-металлический конус для направления детонационной волны; 3 — заряд ВВ; 4 — метаемая труба; 5 — облицовываемый цилиндр; 6 — центрирующее основание.
Рисунок 6 — Сварка биметаллических цилиндрических заготовок переменного диаметра.

При сварке листовых деталей основными параметрами режима являются:

  • угол установки деталей α = 2…16°;
  • первоначальный зазор h = 2…13 мм;
  • скорость детонации ВВ Vд = 2500…3500 м/с;
  • скорость соударения Vс;
  • скорость перемещения точки соударения Vк.
  • На практике для определения режимов сварки взрывом последовательно выбирают необходимую скорость детонации (Vд = 2500…3500 м/с), величину зазора h и угол наклона α. Возможна сварка деталей без зазора с h = 0 и углом a = 0°. Если основные параметры выбраны оптимальными, то получается высококачественное сварное соединение, равное по прочности основному металлу.

    Сварные соединения, полученные взрывом, обладают достаточно большими прочностными свойствами. При испытаниях разрушение образцов, как правило, происходит по наименее прочному металлу пары на некотором расстоянии от плоскости соединения.

    При сварке листовых деталей взрывом соединение наблюдается практически по всей поверхности. Таким образом изготавливают биметаллические материалы, которые применяются в конструкциях непосредственно после сварки или после прокатки, с помощью которой изготавливаются листы необходимых размеров и толщины. Можно также получить не только двухслойный, но и многослойный биметаллический материал.

    К недостаткам процесса можно отнести трудность сварки малопластичных, хрупких металлов (чугуна, высокопрочных титановых сплавов), разрушающихся при взрывном нагружении.

    Сварка взрывом осуществляется в полигонных условиях для крупногабаритных деталей, если масса заряда достигает десятков и сотен килограммов, либо в специальных производственных помещениях (боксах) в вакуумных камерах, если масса заряда ВВ не превышает несколько килограммов. Использование вакуумных камер предотвращает разрушающее действие ударной волны и даже звуковой эффект.

    Что такое сварка взрывом? Преимущества и недостатки

    Сварка взрывом — неизвестная технология для многих сварщиков, даже профессиональных. Что уж говорить о новичках, которые искренне удивляются, услышав о таком необычном методе сварки. Суть технологии незамысловата: на поверхность деталей направляется поток взрывной энергии, из-за которой детали деформируются и соединяются. В результате получается многослойное изделие.

    результат сварки взрывом

    С помощью сварки взрывом можно соединять любые металлы, в том числе разнородные. Соединение получается неразъемным и очень прочным, поэтому такая технология получила свое распространение во многих сферах производства. В этой статье мы кратко расскажем, что такое сварка взрывом, какие есть достоинства и недостатки у такой технологии, и какие особенности нужно учитывать.

    Содержание статьи

    Общая информация

    Взрывная сварка проста, несмотря на свое необычное название. Относится к сварке под давлением. Далее мы подробно расскажем, какова технология этого метода сварки.

    Обычно соединяют две металлические пластины. Одна из них называется неподвижной и располагается снизу, а вторая называется подвижной и располагается сверху под небольшим углом. Неподвижную деталь также называют основной, а подвижную — плакирующей.

    На верхнюю подвижную деталь кладут взрывчатое вещество и детонатор. Взрывчатое вещество инициируют и образуется взрыв, который приводит в движение подвижную часть. В результате подвижная часть набирает большую скорость и ударяется с неподвижной. Обе детали под действием силы удара деформируются, образуя неразъемное соединение.

    схема сварки взрывом

    С помощью сварки взрывом можно получить композитные изделия, а также многоуровневые и биметаллические. При этом изделие будет устойчиво к коррозии и механическим нагрузкам. Несмотря на то, что мы мало что слышим про сварку взрывом, эта технология применяется во многих сферах. Начиная от нефтяной, заканчивая машиностроением. При этом у сварки взрывом есть множество подтипов, а это доказывает, что такая технология очень востребована на современном производстве.

    Преимущества и недостатки

    У сварки взрывом есть свои плюсы и минусы. Впрочем, как и любого другого метода сварки. Давайте рассмотрим их поподробнее.

    Итак, плюсы. Первый плюс — это высокая скорость сварки. Чтобы получить прочное соединение достаточно нескольких микросекунд. Согласитесь, это впечатляет. Отсюда и высокая производительность такого метода сварки. Также отметим, что такая технология позволяет получать биметаллические изделия. Т.е., изделия, состоящие из двух различных металлов.

    сварка взрывом 2

    Также с помощью данной технологии можно плакировать стали с особыми физико-химическими свойствами. Плакирование — это покрытие одного металл слоем другого металла. Еще с помощью сварки взрывом можно изготавливать заготовки неограниченного размера, можно делать детали для ковки.

    Еще один неоспоримый плюс — простота и дешевизна сварки взрывом. По сути основная статья трат — это взрывное вещество и детонатор. Ну и сами детали, которые нужно сварить.

    Но не обошлось и без недостатков. Первый минус — теоретический вред от волн, образующихся при взрыве. Если свариваются небольшие детали, то вреда может и не быть. А вот при взрыве крупногабаритных деталей нужно защищать персонал от несчастного случая. Это требует дополнительных расходов на экипировку.

    Второй неочевидный минус — это необходимость допуска к работе только высококвалифицированных сварщиков. А если таковых нет в штате, то придется обучать персонал всем азам этой технологии. Дополнительно нужно будет преподавать технику безопасности при работе со взрывчатыми веществами.

    И последний минус, вполне существенный — это невозможность автоматизации процесса сварки. По крайне мере, пока. Технологии еще не развились до той степени, когда не требуют присутствия человека во время взрыва. А это значит, что на конечный результат велико влияние человеческого фактора.

    Особенности технологии

    У сварки взрывом есть свои характерные особенности, которые надо учитывать. Прежде всего, необходимо обязательно обрабатывать поверхность заготовок перед сваркой. Если на поверхности останется пыль или грязь, то при соприкосновении после взрыва детали просто не соединяться должным образом.

    Также нужно учитывать, что сварка взрывом дает возможность соединения любых металлов, но с оговорками. Дело в том, что у некоторых металлов от силы взрыва начинает ускоряться диффузия, что плохо сказывается на конечном результате. Это нужно учитывать в работе.

    Только при соблюдении рекомендаций, указанных выше, взрывная сварка может пройти с хорошим результатом. В противном случае металлоструктура нарушится и соединение получится недолговечным. Также важно знать и понимать некоторые особенности самого процесса.

    Например, мы уже знаем, что верхняя пластина вращается, а нижняя остается в неподвижном положении. Так вот, даже после соединения верхней и нижней пластины верхняя продолжает сохранять свою энергию и вращаться, но уже вместе с соединенной нижней частью. Понимание таких мелочей позволит вам не совершить многие ошибки.

    Зная такие мелочи вы уже поймете, что от скорости вращения верхней пластины может зависеть качество сварного соединения. Зачастую скорость вращения верхней детали должна быть очень большой, чтобы две заготовки соединились друг с другом. И наблюдение за скоростью поможет вам заранее узнать, какой результат вы получите в итоге.

    Это лишь некоторые их особенностей, которые нужно учитывать. Мы рассказали самые основные. В ходе работы вы заметите еще много других нюансов, которые не совсем очевидны. Так что единственная рекомендация, которую мы можем дать — практикуйтесь как можно больше, чтобы получить опыт и понимание всей сути данной технологии.

    Скорее всего, ваша первая сварка взрывом не будет успешной. А все потому, что недостаточно просто прочесть пару статей в интернете, посмотреть несколько видеороликов и приступить к работе. Нужно много практиковаться и желательно изучать нормативные документы, в которых четко расписаны все особенности и технология сварки взрывом.

    Вместо заключения

    Сварка взрывом — очень интересная и необычная технология. С ее помощью можно сварить разнородные металлы, получив долговечное соединение с аккуратным швом. Конечно, до выполнения таких работ допускают только настоящих мастеров своего дела, но кто знает, быть может и вы однажды примените в своей практике такой необычный метод сварки.

    Возможно, среди наших читателей найдутся профессиональные сварщики, которые уже выполняли сварку взрывом? Расскажите о своем опыте в комментариях. Он будет полезен для многих начинающих сварщиков. Желаем удачи в работе![Всего: 0   Средний:  0/5]

    Сварка взрывом, схема работы метода, применение, технология


    пер.Каштановый 8/14
    51100
    пгт.Магдалиновка

    Лого metallsmaster


    Nikolaenko Dmitrij

    Сварка взрывом, схема работы метода, применение, технология

    Лого metallsmasterСварка взрывом, схема работы метода, применение, технология


    Сварка взрывом, схема работы метода, применение, технология


    1. 5
    2. 4
    3. 3
    4. 2
    5. 1

    (1 голос, в среднем: 4 из 5)

    Сварка взрывом, схема работы метода, применение, технологияВ технологиях соединения металлов существует огромное разнообразие, которое иногда не поддается объяснению. Так, в 1961году появилась сварка взрывом. Это такой вид сварки, который применяется на основе использования энергии взрыва. Для этого используют разные взрывные вещества, такие как: гранулит, гранулотол, гексоген, аммиачная селитра, аммонал, аммониты.

    Сварка взрывом относится к группе механических процессов соединения металлов, при котором химическая энергия заряда взрывчатого вещества превращается в механическую, сообщая одной из свариваемых частей большую скорость перемещения. При соударении движущей части с неподвижной, вырабатывается кинетическая энергия, которая идет на пластическую деформацию соединяемых слоев металла, что приводит к свариванию металла.

    Сварка взрывом схема

    Сварка взрывом схема производится следующим образом:

    • на основание кладут свариваемую деталь, например пластина металла
    • над ней располагается вторая деталь на специальных технологических опорах, с некоторым зазором
    • на поверхности второй детали находится заряд взрывчатого вещества, строго выбранный по высоте и площади, обычно равной детали
    • в один конец взрывчатого вещества вставляют детонатор
    • затем дается толчок взрыва и распространяется фронт детонационной волны со скоростью в пределах 2000-8000м/с, определяющейся их физическим состоянием и химическим составом
    • газообразные продукты взрыва сохраняют прежний объем взрывчатого вещества какое-то время и находятся под давлением 100-200тыс.атм., а затем с определенной скоростью расширяются по нормалям к свободным поверхностям заряда, выдавая участку металла, который под ним импульс.

    Дальнейшая сварка взрывом схема показывает физические и химические процессы соединения двух металлов.

    Сварка взрывом процесс

    Сварка взрывом, схема работы метода, применение, технологияПосле детонации продолжается сварка взрывом процесс, который схватывает поверхности металлов. Происходит высокоскоростное соударение верхней пластины металла с неподвижной с давлением 102-103кбар, способствующее сжатию с наиболее благоприятными условиями для пластического течения в направлении сварки. При этом сварка взрывом процессе поверхностные загрязнения и окислы поверхности металла дробятся, рассеиваются и выносятся под действием кумулятивного эффекта. После этого идет процесс образования прочных металлических связей в твердой фазе. Энергия активации для этой фазы обеспечивается за счет работы пластической деформации вызванного ею нагрева. Процесс скоротечности сварки взрывом не позволяет развиться объемной диффузии, несмотря на нагрев. Это позволяет широко применять такую сварку для соединения разнородных металлов, а также сплавов. Таким образом, сварка взрывом процесс является механическим, появляющийся из химической энергии, а большая скорость распространения тепла сильно разогревает металл в зоне соединения до высоких температур. Применяется сварка взрывом для:

    • изготовления биметаллических листов металлов любого сочетания;
    • изготовление полых или сплошных композиционных заготовок для профильного проката;
    • для облицовки деталей машин.

    Сварка взрывом — уникальный метод создания биметаллических конструкций

    Для соединения металлов с разными теплофизическими характеристиками требуются особые условия, которые не всегда можно получить путем применения стандартных сварочных технологий. Например, для прочной связи алюминия и стали необходимо создать сверхвысокое давление в месте их контакта, что позволяет реализовать только сварка взрывом. Этот метод имеет достаточно специфические требования к рабочей среде и расходным материалам. Вместе с тем, для некоторых сфер промышленности он является незаменимым, поскольку работает там, где другие варианты оказываются бессильны.

     

    История возникновения и сфера применения технологии

    Идея создания металлических соединений взрывным методом впервые возникла в период Второй мировой войны, когда были обнаружены гильзы отработанных снарядов, приваренные к другим металлическим конструкциям. При этом соединение было таким же прочным, как и у однородных материалов.

     

    Спустя десятилетие американская химическая компания «Дюпон» стала целенаправленно использовать сварку взрывом для получения биметаллических изделий, которые отличались высокой стойкостью к коррозии и механическим нагрузкам. Таким образом, удалось поставить на поток производство материалов со значительно увеличенным сроком службы.

     

    Поскольку взрывная технология позволяет получить композиты, способные более 30 лет сохранять свои свойства в достаточно агрессивных условиях, сегодня она активно применяется в нефтехимической промышленности для плакирования листовых и цилиндрических деталей (стержней, труб, емкостей). Кроме того, такой метод используется при изготовлении термостойких и коррозиестойких конструкций для литейного производства, машиностроения и судостроения.

     

    Так выглядит биметаллическая деталь

     

    Как выполняется сварка взрывом

    Чтобы из разнородных деталей получить цельное изделие, реализуют следующий алгоритм:

     

    1. Основной металл размещают на неподвижном основании.
    2. Сверху на небольшом расстоянии укладывают плакирующий металл, который покрывают равномерным слоем взрывчатого вещества (ВВ).
    3. При детонации ВВ происходит взрыв, фронт которого распространяется от одного края заготовки к другому.
    4. В результате взрывного воздействия плакирующий элемент получает сверхвысокую кинетическую энергию, что приводит к образованию усилия, достигающего нескольких сотен килотонн.
    5. Соударение соединяемых материалов вызывает нагрев поверхности слоев и образование струи плазмы, что приводит к обмену электронами и получению прочных связей.

     

    Физика данного процесса несколько схожа с процессом электронно-лучевой сварки, где за счет высокой кинетической энергии электроны проникают вглубь металлической поверхности, вызывая ее нагрев. Однако если при реализации ЭЛС источником энергии является луч высокой мощности, то в данном случае электронный обмен достигается за счет энергии, высвобождаемой при детонации ВВ. Кстати, подробнее про электронно-лучевую технологию можно прочитать здесь.

     

    Надежность видна невооруженным взглядом

     

    Прочность сварного соединения по большому счету зависит от количества и скорости детонации взрывчатого вещества. Данные показатели обычно подбирают экспериментальным путем, при этом негативный эффект может иметь как нехватка, так и переизбыток ВВ. Также для улучшения прочности конструкции между основными материалами иногда вставляют тонкую прослойку из ванадия, ниобия или тантала, которая во время эксплуатации не поддается коррозии и способствует сохранению цельности сварного шва.

    Как это делают на западе (en) :

     

     

    Специфические особенности сварочного процесса

    В теории, взрывная методика получения биметаллических связей не отличается большой сложностью, однако на практике ее реализация зачастую затруднена. Связано это с пагубным влиянием ударной волны на окружающую среду и необходимостью хранения взрывчатых веществ. Для соблюдения безопасности процесса подобные работы проводят на полигонах, расположенных в районах с невысокой сейсмической активностью. Если свариваемые детали имеют небольшие габариты, допускается применение специальных камер, стены которых должны выдерживать нагрузку, создаваемую ударной волной.

     

    Как уже отмечалось, подбор количества взрывчатого вещества осуществляют экспериментально. Очень сложно произвести точные расчеты, так как нельзя просто остановить или замедлить процесс на определенном этапе, чтобы подробно его исследовать и выработать определенную схему. Поэтому к каждому изделию применяется индивидуальный подход, что делает невозможной автоматизацию работы.

     

    Учитывая сложность реализации подобной технологии, ее применяют только в тех случаях, когда взрыв является единственной возможностью соединения двух металлов. В иной ситуации технологи отдают предпочтение более доступным методам сварки, среди которых MAG, FCAW и TIG, выполняемые в среде защитного газа. Например, TIG-сварка тоже позволяет создавать биметаллические изделия, однако для этого очень важно осуществить правильный подбор газовой смеси. Подробнее о видах и ценах на сварочные газы можно узнать по этой ссылке.

    технология, плюсы и минусы, техника безопасности

    Сварка является одним из наиболее известных способов соединения металлов. Однако, не всегда есть возможность соединить между собой абсолютно разные по характеристикам заготовки. Решение этой задачи было найдено американцами в 1960 году, им стала сварка взрывом. Благодаря такому способу обработки появилась возможность создания многослойных металлических «бутербродов», внешними слоями которых стали металлы с высокими антикоррозийными свойствами.

    Известный способ соединения металлов

    Общие сведения

    Сварка взрывом относится к разновидности сварки под давлением. Воздействие осуществляется ударной волной, образующейся в результате инициирования взрывчатых веществ.

    Технология обработки при помощи взрывной сварки не полностью изучена, но уже активно применяется в промышленных масштабах для:

    • укрепления сцепления металлических поверхностей сложной конструкции;
    • изготовления монолитных многоуровневых изделий;
    • производства полых заготовок цилиндрической формы;
    • надежной фиксации стыков труб;
    • создания биметаллических заготовок.

    Биметаллическая заготовка

    Это лишь малый список возможностей. Подробная информация о сварке взрывом известна далеко не всем, потому как чаще всего она используется в случаях, когда другие методы не дают требуемого эффекта.

    Способы

    Специфика сварки взрывом достаточно проста в применении, а полученное соединение считается одним из наиболее прочных. Для качественного сплавления существуют два отличных друг от друга способа сварки: по стыку и по разнородности.

    Первый, наиболее распространенный способ сварки взрывом — это создание биметаллических заготовок из листовых материалов. Процесс выглядит следующим образом:

    1. На опорный фундамент помещается заготовка, которая в процессе будет неподвижной и основной.
    2. По всей длине листа размещается взрывчатое вещество, после чего монтируется детонатор.
    3. Верхний (плакирующий) лист по плану должен смещаться после взрыва, поэтому его укладывают под углом 3-10° градусов к поверхности основного листа.
    4. Взрыв за доли секунды перемещает верхний лист к основному. В результате воздействия сильной ударной волны практически мгновенно образуется прочное соединение.

    Подробная схема

    Второй способ взрывной сварки применяется для плавления труб по стыку. Вот как происходит процесс обработки:

    1. В большинстве случаев сплавляют полые трубы. Для предотвращения деформации внутри каждой трубы помещают металлический сердечник.
    2. По всему стыку располагают взрывчатое вещество, а потом и детонатор.
    3. За доли секунды после взрыва поверхности сплавляются.

    В любом из способов необходимо точно рассчитать количество и разновидность взрывчатки. В противном случае велик риск деформации или повреждения свариваемых поверхностей.

    Плавление труб по стыку

    Преимущества и недостатки

    У любого метода обработки есть положительные и отрицательные моменты. Сварка взрывом не исключение. К достоинствам относят:

    • Стремительность процесса. Стоит вспомнить, что соединение заготовок происходит за какие-то доли секунды. Именно скорость обработки часто становится основным фактором при выборе сварки взрывом.
    • Сплавление разнородных металлов. Другие способы сварки исключают возможность качественной сварки материалов с разными физико-химическими характеристиками.
    • Плакирование. Данным термином называют придание определенных свойств путем покрытия верхнего слоя слоем другого металла.
    • Экономичность. Цельные детали успешно заменяют плакированными, что существенно снижает затраты на заготовки.
    • Дешевизна. Технология сварки взрывом включает в себя затраты только на взрывчатое вещество и детонатор. Другого оборудования не требуется.
    • Универсальность. Создание изделий сложной формы, заготовок для ковки и штамповки, деталей со множеством изгибов.

    Подготовка к рабочему процессу

    Помимо положительных моментов существуют и отрицательные. Среди основных недостатков стоит отметить:

    • низкий уровень управляемости процессом, мощную взрывную волну сложно контролировать;
    • необходимость соответствующей квалификации для допуска к работе;
    • взрывать можно только в специальных защитных камерах или на оборудованных полигонах;
    • длительная подготовка, для расчета типа взрывчатого вещества и его закладки требуется много времени;
    • низкая автоматизация, сильная зависимость от человеческого фактора, увы, автоматизировать такую сварку пока не смогли.

    Взрывная волна

    Несмотря на преобладание положительных моментов, пренебрегать техникой безопасности нежелательно.

    Техника безопасности

    При работе со взрывчатыми веществами необходимо тщательно соблюдать технику безопасности, ориентируясь в основном, на меры противопожарной безопасности. Тем не менее риск вредного воздействия на работников и на окружающих очень велик, не стоит забывать о низком проценте управляемости взрывной волны. По этим (и не только) причинам рекомендуется придерживаться следующих ограничений:

    • На полигоне. Это масштабный кусок земли для подобных опасных испытаний. Оборудовать полигон для сварки взрывом обязательно вдали от жилого массива.
    • На площадке. Сам процесс должен осуществляться на предварительно подготовленной рабочей площадке, углубленное место с песчаной «подушкой». Чем толще «подушка», тем сильнее она гасит взрывную волну, но предел толщины 1 метр.
    • В защитных камерах. На производстве чаще всего встречается небольшой заряд 15-20 кг. Для взрыва используют отдельном пустое помещение со стенами из бетона или кирпича, толщиной 25 см и более. Целостность оболочки камеры не должна быть нарушена или деформирована.
    • Индивидуальная защита. Применение средств индивидуальной защиты просто неотъемлемая часть техники безопасности при сварке.

    Соблюдение обозначенных рекомендаций снизит вероятность возникновения нестандартных ситуаций во время процесса, который имеет, в свою очередь, некоторые особенности.

    Итоговый результат

    Особенности

    Процесс сварки взрывом включает в себя два этапа: кропотливую подготовку и молниеносную сварку. Рассмотрим подробнее каждый этап.

    Повысить качество сварного соединения и обеспечить его прочность поможет предварительная обработка деталей. Для правильной подготовки необходимо:

    • Выпрямить поверхность свариваемых изделий, максимальная кривизна должна быть 2 мм/м².
    • Обезжирить места соединения, удалить с них оксидную пленку, протереть от окалины и прочих примесей.
    • Достичь необходимой шероховатости. Для этого иногда допустимо использование абразивных материалов.

    Рабочий процесс

    После подготовительных манипуляций взрывчатое вещество аккуратно и равномерно распределяют по поверхности, в зависимости от способа сварки.

    По всем параметрам подготовительный этап занимает намного больше времени, чем сам процесс. Да, все происходит за несколько микросекунд: ударная волна серьезной мощности с силой ударяет движимый слой о неподвижный, формируя сварное соединение.

    Собираясь проводить сварку взрывом стоит помнить, что воздействие взрывной волны на некоторые металлы ухудшает и разрушает их структуру. Вследствие этого в самом слабом по прочности месте сварного соединения возникает диффузия, которая негативно сказывается на результате.

    Контроль качества швов

    Для контроля сварных соединений, полученных путем сварки взрывом, проверяются три параметра:

    1. Плотность шва проверяют ультразвуковым методом. Для важных швов применяют проверку рентгеноскопией.
    2. Прочность выявляют при помощи срез части шва или его разрыва.
    3. Пластичность исследуют путем различных изгибов, прогибов и кручений сварного соединения.

    Качественный шов

    При возникновении сомнений в ровности результата, полученное изделие проверяют на деформацию. Для этого понадобится любой измерительный прибор, например линейка.

    Новые технологии обработки металлов завоевывают позиции, но остаются не полностью рассмотренными. Поэтому, несмотря на кажущуюся простоту процесса, необходимо предварительно изучить все нюансы и особенности техники безопасности.

    Сварка взрывом видео

    Когда разговор заходит о таком технологическом процессе, как сварка взрывом, необходимо понимать, что взрыв на самом деле в нем присутствует, но основа всего процесса – это резкое смещение двух металлических заготовок относительно друг друга. Скорость настолько большая, что между заготовками появляется огромное давление, соединяющее их на молекулярном уровне. Эта сварочная технология появилась в середине прошлого столетия, и ее сразу же стали использовать, особенно для соединения металлов, которые другими видами сварки невозможно было состыковать.

    screenshot_301

    Технология сварки взрывом

    Необходимо отметить, что по чисто технологической составляющей сварка взрывом относится к механическому соединению металлов. Выделяемая при взрыве тепловая энергия (она же является и химической энергией) под действием большого количества газов превращается в механическую. То есть, под действием взрыва происходит смещение одной заготовки, на которую был он направлен, относительно другой.

    Скорость смещения заготовки огромна. Сами детали устанавливаются под определенным углом относительно друг друга, одна из них закреплена прочно к несущей конструкции. При смещении контакт происходит по линии, а не по всей поверхности контакта. При такой скорости выделяется кинетическая энергия, которая образуется в процессе трения одной металлической заготовки о другую. С помощью этого вида энергии происходит деформация верхних слоев металла на обеих заготовках. То есть, происходит сваривание.

    Основное условие качества сварочного шва – это необходимая скорость, придаваемая незакрепленной заготовке взрывом. Скорость должна быть определенного значения, меньший или повышенный показатель – это низкое качество конечного результата.

    Подготовительный этап

    Итак, для проведения сварки взрывом потребуются две металлические заготовки, взрывчатое вещество с детонатором, фундамент, на который закрепляется неподвижная деталь. Сам процесс сварки будет зависеть от габаритов деталей, от их формы (листовая или цилиндрическая), марки металла, его структуры (монолит или многослойность). Обязательно в процессе учитывается расстояние между свариваемыми деталями и угол наклона между ними же.

    Конечно, проводя сварочный процесс, необходимо учитывать все условия. Но технология одинаковая для любых изделий с некоторыми изменениями в плане величин заряда.

    • Неподвижную деталь необходимо установить на массивную плиту. Это может быть железобетон или металл, песок или дробь. После каждого взрыва основание разрушается или деформируется. Кстати, два последних материала лучше всех поддаются ремонту. С ними и проблем меньше. Металлическую плиту можно использовать для сварки несколько раз.
    • Подвижную заготовку устанавливают относительно неподвижной под углом 3-10 градусов. Зазор между ними – 2-10 мм.
    • На поверхность подвижной детали равномерно укладывается взрывчатое вещество, как показано на видео. Равномерность укладки – основной принцип качества взрыва. Именно оно позволяет избежать смещений и изгибов самой подрываемой детали.
    • В качестве взрывного вещества можно использовать достаточно широкую линейку взрывчатых материалов. К примеру, тол, аммонал, гексоген и прочие.

    Установка взрывчатки – очень важный этап, касающийся сварки. Для того чтобы установка прошла точно, необходим специальный контейнер, изготовленный из прочного картона. По сути, это коробка без крышки, в днище которой делаются отверстия. Именно последние и создают плотное соприкосновение взрывчатки с плоскостью подвижной детали. Сама коробка точно должна повторять размеры плоскости подвижной детали, как показано на видео.

    И последний этап – это установка детонатора. Все готово, можно производить взрыв. Как только прошла активация взрывчатого вещества, образуется взрывная волна, у которой скорость распространения составляет 2000-8000 м/с. Диапазон достаточно большой, потому что многое будет зависеть от химического состава взрывчатки, а также от физического ее состояния (влажность, плотность и так далее).

    Трудности взрывного процесса

    Основная трудность – это хранение и использование взрывчатки. Любой взрыв – это негативное воздействие на окружающую среду. Поэтому сварка взрывом производится на открытых полигонах, которые располагаются далеко от промышленных и жилых построек, а также в районах сейсмически безопасных, как показано на видео. Если использовать данную технологию для сварки небольших деталей, то ее можно применять в специальных металлических камерах (см. видео) или в подземных укрепленных помещениях.

    Как и в случае с другими видами сварки, при соединении взрывом нужно обязательно зачистить места стыковки деталей. Это зачистка до металлического блеска, плюс обезжиривание растворителем.

    И еще одна достаточно серьезная трудность, встречаемая при сварке взрывом – это точно соблюсти все технологические величины. Как показала практика, в основном используются экспериментальные способы подбора. Все дело в том, что взрыв – процесс моментальный, остановить его в какой-то определенный момент невозможно, а значит, и изучить его не под силу пока. Именно поэтому автоматизировать этот сварочный процесс не получается.

    Сварка взрывом дает возможность соединять между собой любые детали из любых металлов. Однако высокая тепловая энергия, выделяемая при взрыве, может изменить структуру мягких металлов. Обычно происходит диффузия в зоне сваривания, что приводит к снижению качества сварного шва. И если в дальнейшем конструкция из соединенных металлов будет при эксплуатации подвергаться нагрузке высокими температурами, то прочность соединения постепенно снизится до нуля. А это разрушение конструкции в целом.

    Поэтому в технологию сварки взрывом вносятся изменения. А именно между свариваемыми заготовками устанавливаются пластины из металлов, которые при взрыве не вступают в химическое взаимодействие с основными заготовками. К примеру, сварка взрывом между сталью и титаном может привести к тем самым ослабевающим последствиям. Поэтому между ними укладываются пластины из ванадия, ниобия или тантала.

    И все же сварка при помощи взрыва сегодня для некоторых позиций – единственно возможный вариант соединения. Поэтому эту технологию используют, ее изучают и усовершенствуют. Обязательно посмотрите видео, где показано технология сварки взрывом.

    Поделись с друзьями

    0

    0

    0

    0

    ГОСТ, технология, области применения, плюсы и минусы, необходимое оборудование и материалы

    Сварка взрывом является разновидностью ударной сварки, при которой детали свариваются при взаимном соударении, вызываемом детонацией пирозаряда. Нужная температура и скорость соединения деталей достигается за счет кинетической энергии, сообщаемой взрывной волной, а также теплоты сгорания пирозаряда.

    Новый ГОСТ на сварку взрывом (ГОСТ Р ИСО 857-1-2009) вступил в силу с 1 июля 2010 года.

    Технология процесса

    Сваривание двух деталей происходит за счет высокой скорости взрывной волны (до 3000 м/с), распространяющейся равномерно по свариваемой поверхности. При этом одна деталь должна располагаться неподвижно, другая деталь размещается над первой деталью и покрывается равномерным слоем взрывчатого вещества (пирозаряда).

    В качестве пирозаряда могут использоваться:

    • аммонал;
    • аммонит;
    • игдонит;
    • аммиачная селитра.

    Максимальная скорость соударения деталей достигается при использовании аммонита (ГОСТ 21984-76). Детонация осуществляется посредством удара, контролируемого поджига или электроимпульса.

    После детонации пирозаряда поверхность плакирующей детали приваривается к неподвижной детали от края вдоль линии взрыва заряда, кратковременно изгибаясь при этом на угол в 3-10 градусов.

    Область применения

    Метод сварки взрывом используется для соединения:

    • сложных изогнутых поверхностей;
    • деталей из разных металлов и сплавов;
    • элементов внутри полых труб;
    • плоских деталей большой площади.

    Отсутствие сильной диффузии при сварке взрывом позволяет применять данный метод для соединения тонких (до 0,01 мм) листов из разных материалов и для создания многослойных композитов.

    Высокая энергия сваривания позволяет создавать швы высокой однородности, а отсутствие необходимости проваривать шов вручную дает возможность увеличения площади соединения деталей до 50 кв. м.

    Необходимое оборудование

    Для выполнения сварки методом взрыва потребуются:

    • крепление для неподвижной детали;
    • взрывчатое вещество и детонатор;
    • прокладка для установки между деталями;
    • органический растворитель;
    • шлифующий элемент.

    Массивные детали (прокатные листы, металлические основания композитов) располагают на уплотненном гравии или песке без дополнительной фиксации, а небольшие детали, требующие высокой точности соединения, закрепляются на толстом бетонном или металлическом основании специальными монтажными болтами. Болты вставляются в наружные ушки детали, которые отрезаются после завершения процесса сварки.

    Прокладка между плоскими деталями, которые нужно сварить, поддерживает между ними расстояние в 2-8 мм, необходимое для разгона плакирующей детали. Прокладка изготавливается из обеззоленного картона или углеродного клатрата (для высокоточной сварки) – данные материалы сгорают в момент сваривания с выделением углекислого газа практически без образования копоти и золы, которые могут уменьшить прочность соединения.

    Подготовка к сварке

    Перед началом сварки поверхности деталей сначала шлифуются до металлического блеска, после чего обезжириваются растворителем. Без шлифовки плоскость соединения деталей может быть сильно неоднородной за счет отсутствия контакта деталей в неровных местах, а жировая пленка толщиной более 0,01 мм может препятствовать свариванию при быстром соударении деталей (особенно если используются низкотемпературные взрывчатые вещества).

    После обработки поверхности деталей нужно оценить качество пирозаряда. Проверка проводится детонацией заряда вхолостую на небольшой поверхности, при этом оценивается равномерность хода взрывной волны.

    Если свариваются большие площади массивных деталей, то перед нанесением пирозаряда важно соблюсти технику безопасности – огородить место сварки и обеспечить персонал средствами индивидуальной защиты.

    Описание процедуры

    Процедура сваривания деталей взрывом включает следующие шаги:

    1. Нижняя неподвижная деталь располагается на рабочей поверхности.
    2. Далее располагается удерживающая прокладка из картона.
    3. Выше укладывается плакирующая деталь.
    4. На плакирующую деталь равномерно наносится взрывчатое вещество.
    5. По краю детали устанавливается детонирующая система.
    6. Детонатор запускается оператором.
    7. Происходит сваривание и остывание поверхностей.
    8. С плакирующей детали удаляются остатки пирозаряда.

    сварка взрывомСхема сварки взрывом

    Детонирующая система может быть установлена в одной точке края, в нескольких точках или вдоль линии. Например, при сварке двух плоских прямоугольных деталей линия детонации устанавливается по ширине края плакирующей детали.

    После окончания процесса сварки важно убедиться, что на плакирующей детали не осталось невзорвавшегося вещества. Для этого поверхность детали очищается механически и обрабатывается нейтрализующими пирозаряд реагентами.

    Счищенные остатки сгоревшего пирозаряда утилизируются как взрывоопасные вещества, при необходимости подвергаясь контрольной детонации.

    Оценка качества соединений

    Качество сварки взрывом оценивается по следующим критериям:

    • прочность;
    • сплошность;
    • окисляемость;
    • равномерность соединения;
    • чувствительность к воздействию тепла и удара.

    Прочность соединения плоских деталей в композитных изделиях оценивается испытанием на изгиб и перегиб – при изгибе сваренные детали не должны смещаться относительно друг друга и толщина в месте соединения не должна увеличиваться.

    Сплошность – это качество соединения деталей из разных материалов, проверяется ультразвуковым дефектоскопом. Окисляемостью называют наличие окисной пленки вследствие теплового воздействия на поверхность плакирующей детали. Допустимость и максимальная толщина такой пленки зависит от конкретных деталей и назначения готового изделия. Под равномерностью подразумевается отсутствие типичных для сварки дефектов – раковин, наплывов по краям и т. д.

    Достоинства и недостатки метода

    К плюсам сваривания деталей взрывом с использованием пирозаряда можно отнести:

    • высокую скорость сварки;
    • возможность сваривания деталей из разных поверхностей;
    • возможность сваривать детали в труднодоступных местах;
    • высокую однородность и прочность соединения при малой диффузии.

    Равномерно нанесенное взрывчатое вещество соединяет хорошо обработанные детали с одинаковой прочностью по всей площади в отличие от обычной сварки, где большое влияние имеет человеческий фактор.

    Кроме того, отсутствие необходимости касания поверхностей электродом и зрительного наблюдения за процессом дает возможность соединять тонкие детали сложной формы в узких полых пространствах.

    К минусам метода сварки взрывом относят:

    • сложность технологической подготовки;
    • повышенную опасность;
    • неприменимость способа для легкоплавких и горючих деталей.

    Несмотря на высокую скорость самого процесса сваривания, подготовка может занимать значительное время. При этом использование взрывчатого вещества создает высокий риск повреждения деталей температурой или ударной волной, поэтому перед свариванием новых материалов нужно подбирать подходящее вещество для пирозаряда и толщину его нанесения опытным путем.

    Процесс сварки взрывом, использует взрывную детонацию в качестве источника энергии для создания металлургической связи между металлическими компонентами

    Принцип

    Подготовка: Первым этапом операции облицовки является подготовка двух поверхностей, которые необходимо склеить вместе. Эти поверхности шлифуются или полируются для достижения однородной отделки поверхности с шероховатостью Ra
    (140 RMS) или ниже 3 мкм, в зависимости от комбинации металлов и толщины.

    Монтаж: плакирующего пластина расположена параллельно и выше опорной плиты, на расстоянии зазора, который был предварительно определенной для комбинации конкретных металлов, которые соединены.Это расстояние выбрано для обеспечения того, чтобы пластина оболочки сталкивалась с пластиной основания после ускорения до определенной скорости столкновения. Расстояние зазора обычно варьируется от 0,5 до 4-кратной толщины листа облицовки в зависимости от выбора параметров удара. Ограниченный допуск скорости столкновения приводит к аналогичному контролю допуска расстояния зазора.

    Расстояние зазора регулируется опорными прокладками на краях пластины и внутри по мере необходимости. Внутренние защитные устройства рассчитаны на потребление струей.

    Рамка для сдерживания взрывчатых веществ размещена по краям металлической пластины оболочки. Высота рамы устанавливается таким образом, чтобы в ней содержалось определенное количество взрывчатого вещества, обеспечивающее выделение определенной энергии на единицу площади.

    Операция связывания: Состав и тип взрывчатого вещества выбираются для получения определенного энерговыделения и определенной скорости детонации (скорости, с которой фронт детонации проходит через слой взрывчатого вещества). Скорость детонации должна быть дозвуковой по отношению к акустическим скоростям металлов.

    Взрывчатое вещество, обычно гранулированное, равномерно распределяется по поверхности облицовочной плиты, заполняющей защитную рамку. Он воспламеняется в заданной точке на поверхности пластины с помощью высокоскоростного взрывного ускорителя. Детонация распространяется от точки инициирования по поверхности пластины с заданной скоростью детонации. Расширение газа при взрыве взрывчатого вещества ускоряет пластину оболочки через зазор зазора, что приводит к угловому соударению с заданной скоростью столкновения.Результирующий удар создает очень высокое локальное давление в точке столкновения.

    Эти давления распространяются от точки столкновения с акустической скоростью металлов. Поскольку столкновение продвигается вперед с дозвуковой скоростью, на непосредственно приближающихся смежных поверхностях создаются давления, которые достаточны для того, чтобы отколоть тонкий слой металла от каждой поверхности и выбросить его струей. Поверхностные загрязнения, оксиды и примеси удаляются струей. В точке столкновения вновь созданные чистые металлические поверхности сталкиваются под высоким давлением в несколько ГПа.Хотя при взрыве взрывчатого вещества выделяется много тепла, для передачи тепла металлам нет времени. В результате получается идеальная связь металл-металл без плавления или диффузии.

    Индустриализация

    Процесс плакирования взрывом обычно используется для плоских листов. Этот процесс также может быть использован для изготовления концентрически связанных труб и труб. В оболочке трубы взрывчатое вещество может быть размещено внутри канала или снаружи внешней трубы, в зависимости от диаметра, толщины стенки и других факторов.Процесс не подходит для облицовки поверхностей сложной формы. Когда требуются фасонные изделия, такие как головки, оболочка изготавливается в виде плоской пластины, которой после склеивания формуют изделие требуемой конфигурации.

    Покрытие и основные металлы

    На приведенном выше рисунке показан широкий спектр комбинаций, которые могут быть получены с помощью взрывного соединения.

    Общие размеры листов облицовки

    Общие размеры облицовки обычно ограничиваются только наличием плоского металлического листа или пластины и транспортными ограничениями.Максимальный размер пластины также может быть ограничен пределами детонации взрывчатых веществ, такими как шум и ограничения окружающей среды. Редко размер ограничен ноу-хау в области облицовки. Обычно могут производиться пластины следующих максимальных размеров:

    • Длина 12000 мм
    • Ширина 5000 мм
    • Толщина основания 500 мм
    • Толщина покрытия 25 мм
    • Площадь 35 м²

    Производство

    Плакированный металл можно легко формовать и сваривать при необходимости создания технологического оборудования.Многие производители оборудования по всему миру обладают обширным опытом и ноу-хау в этой области. Формовка головки и оболочки и сварка плакированных листов хорошо известны производителям, специализирующимся на плакировании.

    Общие соображения

    Для многих применений, особенно для больших сосудов под давлением, предназначенных для высоких температур и давлений, стальная конструкция, плакированная титаном или цирконием, может быть очень экономичной по сравнению с прочной конструкцией. Стоимость тантала настолько высока, что плакированная конструкция является единственной экономичной альтернативой для большинства технологического оборудования.Кроме того, тантал не признан, по крайней мере, Кодексом ASME в качестве конструкционного материала, что ограничило бы его применение, даже если бы экономические показатели твердой конструкции были благоприятными.

    Плакировка должна быть более экономичной, чем цельная конструкция, у которой толщина стенок превышает 19–32 мм для титана и от 16 до 19 мм для циркония.

    Для титана или циркония минимальная толщина футеровки обычно указывается в 2,0 мм, исходя из опасений по поводу загрязнения железа из материала основы из-за нагрева при сварке или прожига, если сварщик неосторожен.Использование более тонкой футеровки, безусловно, возможно при тщательном выборе процесса сварки и параметрах сварки, выбранных таким образом, чтобы минимизировать проплавление, но экономия средств настолько минимальна, что от этой практики в значительной степени отказались.

    Тантал обычно используется толщиной 1,0 мм. Из-за высокой стоимости и более высоких температур плавления в танталовой оболочке часто используется медная прослойка, которая отводит тепло и сводит к минимуму риск загрязнения сварных швов даже при очень тонких гильзах.

    Конструкция с плакировкой становится относительно более дорогой, если есть больше деталей, таких как сопла и отверстия, требующие значительного детального изготовления.Облицовка может быть очень низкой для больших непрерывных поверхностей.

    Твердая конструкция может быть лучше, если требуется гладкая внутренняя поверхность, поскольку обычные детали конструкции из планок обрешетки приводят к неровной поверхности.

    Преимущества плакированной конструкции

    • Основная причина облицовки — экономия.
    • Оболочка

    • также позволяет наносить титан или цирконий при температурах, превышающих их расчетные, допустимые в конструкции кода.

    Недостатки плакированной конструкции

    • Угловым сварным швам, используемым для выполнения соединений в самой гильзе, присуща структурная слабость. Самый большой недостаток заключается в том, что при выходе из строя одного из этих сварных швов коррозионные соединения выделяются по всему материалу основы. Это может привести к необнаруженной коррозии. Кроме того, жидкие загрязнения за футеровкой делают качественный ремонт очень трудным, если не невозможным. Свободные футеровки обычно не подходят для работы в вакууме.
    • Плакированная конструкция по своей сути сложна по сравнению с прочной конструкцией, особенно в конструкциях с множеством сопел, насадок или сложных внутренних устройств.
    • По крайней мере, из титана облицованное оборудование может быть тяжелее, чем сплошная конструкция, что может увеличить стоимость фундаментов и опор, и может быть учтено, например, в некоторых критических по весу приложениях на морских платформах.
    • Внешний вид облицованного сосуда может потребовать покраски и подкраски, а также постоянного обслуживания системы окраски.

    Источник (частично): Dynamic Materials Corporation и Titanium Fabrication Corporation

    Большой сосуд высокого давления с титановым покрытием

    ,

    Сварка взрывом

    Сварка взрывом и закалка — это особые процессы обработки металлов давлением, в которых используется сила взрывчатых веществ для создания или улучшения металлических конструкций.

    Сварка взрывом — это процесс, при котором сварка осуществляется путем ускорения одного из компонентов с чрезвычайно высокой скоростью с помощью взрывчатых веществ. Сварка взрывом может привести к соединению двух металлов, которое невозможно сварить обычными способами. В процессе не плавится ни один металл.Вместо этого он заставляет поверхности обоих металлов войти в тесный контакт, достаточный для создания сварного шва. Большие площади могут быть легко склеены, а сам сварной шов чистый благодаря тому факту, что поверхностный материал обоих металлов сильно выталкивается под действием разрушающейся полости.

    OZM Research занимается разработкой и производством биметаллических и многослойных металлических материалов, сваренных взрывом. Компоненты обычно производятся в тесном сотрудничестве с заказчиком. OZM Research также предлагает разработку технологии производства для отдельных продуктов, основанной на применении эффектов взрыва, таких как формование взрывом, закалка или сварка металлических и керамических материалов

    ПРИЛОЖЕНИЕ

    Полуфабрикаты для изготовления трубных пластин теплообменников

    Эти полуфабрикаты производятся в сочетании углеродистых и низколегированных сталей с коррозионно-стойкими сталями, медью и медными сплавами, титаном, алюминием и алюминиевыми сплавами, никелем и никелевыми сплавами и т. Д.Облицовка может быть односторонней или двухсторонней, обычно на всей площади.

    Биметаллические или многослойные листы

    Материалы для изготовления сосудов для использования в энергетике, химическом и пищевом машиностроении производятся во всевозможных комбинациях. Многослойные материалы изготавливаются специального назначения по требованию заказчика.

    Подшипниковые материалы

    На основу из углеродистой стали обычно наплавляют антифрикционные сплавы (оловянные или алюминиевые бронзы) в виде листов (полос).Полученная продукция используется при производстве вкладышей подшипников, опорных плит, полуфабрикатов элементов компонентов гидросистемы и др.

    Износостойкие материалы

    Аустенитная марганцовистая сталь Хэдфилда, классический износостойкий материал, плакирована углеродистой сталью, что позволяет приваривать полученный материал к стальным конструкциям с использованием стандартных процедур.

    Прокатываемые заготовки

    Блюмы или заготовки, плакированные с одной или с обеих сторон и предназначенные для горячей или холодной прокатки, изготавливаются из комбинации углеродистой стали — коррозионно-стойкого материала, титана, меди и медных сплавов или никелевых и никелевых сплавов.В эту категорию входят комбинации различных сплавов меди и серебра для использования в электротехнике.

    Конструкционные переходные швы

    Биметаллические или многослойные конструкционные детали, предназначенные для последующей сварки плавлением двух материалов, которые не свариваются стандартным способом. Наиболее распространенным является сочетание углеродистой стали и алюминия для электротехнических целей или, например, для соединения стальной конструкции судна с алюминиевыми элементами палубы, а также из сплава коррозионно-стойкая сталь — медь — сплав AlMn1 для фланцевых труб в криогенной технике.Также возможно изготовление трубчатых переходных швов.

    Полуфабрикаты для форм для стекла

    Они выпускаются в виде пластин, блоков и дисков с односторонней плакировкой из чистого никеля или аустенитной высоколегированной хромоникелевой стали. Основным материалом является, как правило, конструкционная мягкая углеродистая сталь. Сопротивление функционального слоя можно сочетать с теплопроводностью основы, что приводит к значительной экономии никеля и никелевых сплавов.Эти полуфабрикаты находят применение при изготовлении форм для ручного прессования стеклянных камней.

    Сварка взрывом и крепление трубы к пластине

    Сварка взрывом и прикрепление труб к трубным пластинам может выполняться в широком диапазоне геометрических комбинаций и комбинаций материалов.

    Лабиринтные охладители

    Методом взрывной наплавки медных или стальных пластин с вырезанным лабиринтом произвольной формы, медным или стальным листом изготавливают пластинчатые (или цилиндрические) охладители, предназначенные для непрерывного или полунепрерывного литья цветных металлов. металлы или сталь.

    Футеровка раструбных труб и обшивка стержней или валов (обшивка)

    Чаще всего применяется облицовка раструбов коррозионно-стойкими материалами. Валы могут быть покрыты рубашкой, например с подходящим антифрикционным материалом. Биметаллические стержни круглого сечения могут быть изготовлены из различных комбинаций материалов.

    Порядок вопросов по сварке взрывом

    ,

    Процесс соединения взрывом, или процесс плакирования взрывом, или процесс сварки взрывом, использует взрывную детонацию в качестве источника энергии для создания металлургической связи между металлическими компонентами

    Принцип

    Подготовка: Первым этапом операции облицовки является подготовка двух поверхностей, которые необходимо склеить вместе. Эти поверхности шлифуются или полируются для достижения однородной отделки поверхности с шероховатостью Ra
    (140 RMS) или ниже 3 мкм, в зависимости от комбинации металлов и толщины.

    Монтаж: плакирующего пластина расположена параллельно и выше опорной плиты, на расстоянии зазора, который был предварительно определенной для комбинации конкретных металлов, которые соединены. Это расстояние выбрано для обеспечения того, чтобы пластина оболочки сталкивалась с пластиной основания после ускорения до определенной скорости столкновения. Расстояние зазора обычно варьируется от 0,5 до 4-кратной толщины листа облицовки в зависимости от выбора параметров удара. Ограниченный допуск скорости столкновения приводит к аналогичному контролю допуска расстояния зазора.

    Расстояние зазора регулируется опорными прокладками на краях пластины и внутри по мере необходимости. Внутренние защитные устройства рассчитаны на потребление струей.

    Рамка для сдерживания взрывчатых веществ размещена по краям металлической пластины оболочки. Высота рамы устанавливается таким образом, чтобы в ней содержалось определенное количество взрывчатого вещества, обеспечивающее выделение определенной энергии на единицу площади.

    Операция связывания: Состав и тип взрывчатого вещества выбираются для получения определенного энерговыделения и определенной скорости детонации (скорости, с которой фронт детонации проходит через слой взрывчатого вещества).Скорость детонации должна быть дозвуковой по отношению к акустическим скоростям металлов.

    Взрывчатое вещество, обычно гранулированное, равномерно распределяется по поверхности облицовочной плиты, заполняющей защитную рамку. Он воспламеняется в заданной точке на поверхности пластины с помощью высокоскоростного взрывного ускорителя. Детонация распространяется от точки инициирования по поверхности пластины с заданной скоростью детонации. Расширение газа при взрыве взрывчатого вещества ускоряет пластину оболочки через зазор зазора, что приводит к угловому соударению с заданной скоростью столкновения.Результирующий удар создает очень высокое локальное давление в точке столкновения.

    Эти давления распространяются от точки столкновения с акустической скоростью металлов. Поскольку столкновение продвигается вперед с дозвуковой скоростью, на непосредственно приближающихся смежных поверхностях создаются давления, которые достаточны для того, чтобы отколоть тонкий слой металла от каждой поверхности и выбросить его струей. Поверхностные загрязнения, оксиды и примеси удаляются струей. В точке столкновения вновь созданные чистые металлические поверхности сталкиваются под высоким давлением в несколько ГПа.Хотя при взрыве взрывчатого вещества выделяется много тепла, для передачи тепла металлам нет времени. В результате получается идеальная связь металл-металл без плавления или диффузии.

    Индустриализация

    Процесс плакирования взрывом обычно используется для плоских листов. Этот процесс также может быть использован для изготовления концентрически связанных труб и труб. В оболочке трубы взрывчатое вещество может быть размещено внутри канала или снаружи внешней трубы, в зависимости от диаметра, толщины стенки и других факторов.Процесс не подходит для облицовки поверхностей сложной формы. Когда требуются фасонные изделия, такие как головки, оболочка изготавливается в виде плоской пластины, которой после склеивания формуют изделие требуемой конфигурации.

    Покрытие и недрагоценные металлы

    На приведенном выше рисунке показан широкий спектр комбинаций, которые могут быть получены с помощью взрывного соединения.

    Общие размеры листов облицовки

    Общие размеры облицовки обычно ограничиваются только наличием плоского металлического листа или пластины и транспортными ограничениями.Максимальный размер пластины также может быть ограничен пределами детонации взрывчатых веществ, такими как шум и ограничения окружающей среды. Редко размер ограничен ноу-хау в области облицовки. Обычно могут производиться пластины следующих максимальных размеров:

    • Длина 12000 мм
    • Ширина 5000 мм
    • Толщина основания 500 мм
    • Толщина покрытия 25 мм
    • Площадь 35 м²

    Производство

    Плакированный металл можно легко формовать и сваривать при необходимости создания технологического оборудования.Многие производители оборудования по всему миру обладают обширным опытом и ноу-хау в этой области. Формовка головки и оболочки и сварка плакированных листов хорошо известны производителям, специализирующимся на плакировании.

    Общие соображения

    Для многих применений, особенно для больших сосудов под давлением, предназначенных для высоких температур и давлений, стальная конструкция, плакированная титаном или цирконием, может быть очень экономичной по сравнению с прочной конструкцией. Стоимость тантала настолько высока, что плакированная конструкция является единственной экономичной альтернативой для большинства технологического оборудования.Кроме того, тантал не признан, по крайней мере, Кодексом ASME в качестве конструкционного материала, что ограничило бы его применение, даже если бы экономические показатели твердой конструкции были благоприятными.

    Плакировка должна быть более экономичной, чем цельная конструкция, у которой толщина стенок превышает 19–32 мм для титана и от 16 до 19 мм для циркония.

    Для титана или циркония минимальная толщина футеровки обычно указывается в 2,0 мм, исходя из опасений по поводу загрязнения железа из материала основы из-за нагрева при сварке или прожига, если сварщик неосторожен.Использование более тонкой футеровки, безусловно, возможно при тщательном выборе процесса сварки и параметрах сварки, выбранных таким образом, чтобы минимизировать проплавление, но экономия средств настолько минимальна, что от этой практики в значительной степени отказались.

    Тантал обычно используется толщиной 1,0 мм. Из-за высокой стоимости и более высоких температур плавления в танталовой оболочке часто используется медная прослойка, которая отводит тепло и сводит к минимуму риск загрязнения сварных швов даже при очень тонких гильзах.

    Конструкция с плакировкой становится относительно более дорогой, если есть больше деталей, таких как сопла и отверстия, требующие значительного детального изготовления.Облицовка может быть очень низкой для больших непрерывных поверхностей.

    Твердая конструкция может быть лучше, если требуется гладкая внутренняя поверхность, поскольку обычные детали конструкции из планок обрешетки приводят к неровной поверхности.

    Преимущества плакированной конструкции

    • Основная причина облицовки — экономия.
    • Оболочка

    • также позволяет наносить титан или цирконий при температурах, превышающих их расчетные, допустимые в конструкции кода.

    Недостатки плакированной конструкции

    • Угловым сварным швам, используемым для выполнения соединений в самой гильзе, присуща структурная слабость. Самый большой недостаток заключается в том, что при выходе из строя одного из этих сварных швов коррозионные соединения выделяются по всему материалу основы. Это может привести к необнаруженной коррозии. Кроме того, жидкие загрязнения за футеровкой делают качественный ремонт очень трудным, если не невозможным. Свободные футеровки обычно не подходят для работы в вакууме.
    • Плакированная конструкция по своей сути сложна по сравнению с прочной конструкцией, особенно в конструкциях с множеством сопел, насадок или сложных внутренних устройств.
    • По крайней мере, из титана облицованное оборудование может быть тяжелее, чем сплошная конструкция, что может увеличить стоимость фундаментов и опор, и может быть учтено, например, в некоторых критических по весу приложениях на морских платформах.
    • Внешний вид облицованного сосуда может потребовать покраски и подкраски, а также постоянного обслуживания системы окраски.

    Источник (частично): Dynamic Materials Corporation и Titanium Fabrication Corporation

    Большие сосуды высокого давления с титановым покрытием

    Изображение выше является собственностью Coek Engineering NV, Liessel 13-2440 Geel, Бельгия.

    PPT — Презентация PowerPoint по сварке взрывом, скачать бесплатно

  • Сварка взрывом Кейт Пауэлл Майкл Фернандес Стейтон Баррелл

  • Основы • Сварка взрывом — это твердотельный процесс, который обеспечивает высокоскоростное взаимодействие разнородных металлов с помощью контролируемая детонация • Оксиды, обнаруженные на поверхности материала, должны быть удалены путем стирания или диспергирования • Поверхностные атомы двух соединяемых металлов должны войти в тесный контакт для достижения металлической связи

  • Преимущества • Отсутствие зоны термического влияния (HAZ) • Только незначительные плавление • Температура плавления материала и коэффициенты разницы температурного расширения не влияют на конечный продукт • Фронт ударной волны сжимает и нагревает взрывчатый материал, который превышает скорость звука невзорвавшихся взрывчатых веществ

  • Терминология компонента • Базовый компонент • Соединяется с оболочкой • Остается стационарным • Поддерживается наковальня • Металлическая оболочка • Тонкая пластина в прямом контакте с взрывчатыми веществами • Может быть защищена листовой пластиной

  • Флаер-пластина • Жертвенная пластина помещается между взрывчатым материалом и пластиной оболочки • Используется для защиты металла оболочки • Промежуточный слой • Тонкий металлический слой • Повышает присоединение cladder к опорной плите • Anvil • поверхности из которых Поддерживающих остатков во время взрыва

  • Standoff • Расстояния между cladder и опорной плитой до взрыва • Бонда окно • диапазон переменного процесса, таких как скорость, динамический изгиб и противостояние расстояние, результат успешного сварного шва • Bonding работы • Детонация взрывчатых веществ, которые приводят к сварить

  • Принцип взрыва • Cladder металла могут быть размещены параллельно или под углом к ​​опорной плите • Взрывной материал распределен поверх из cladder металла • при детонации, cladder сталкиваются пластины с опорной плитой, чтобы сварить форму

  • Размещение плакировки параллельно металлу • Расстояние зазора заранее определено и уникально для комбинации материалов • Достигается путем размещения регулировочных прокладок между пластинами • Прокладки предназначены для поглощения волной взрыва и не влияют на сварной шов • Обычно колеблется в пределах от 0.В 5-2 раза больше толщины пластины оболочки • Оболочка должна достичь критической скорости до удара

  • Установка оболочки под углом VD Где: Vc = скорость столкновения VD = скорость детонации Vp = скорость столкновения пластины α = заданный угол β = динамический угол изгиба γ = угол столкновения Vc Vp

  • Взрывчатое вещество • Высокая скорость (14750-25000 фут / с) • Тринитротолуол (TNT) • Циклотриметилентринитрамин (RDX) • Пентаэритритолтетранитрат (PETN) • Средне-низкая скорость (PETN) • 4900 -47500 фут / с) • Аммиачная селитра • Перхлорат аммония • Amatol

  • Обеспечение хорошего сварного шва • Три типа детонационно-волновых сварных швов • Ударная волна возникает, если скорость звука превышает 120% скорости звука материала (тип 1 ) • Отделившаяся ударная волна возникает, когда скорость детонации составляет от 100% до 120% звуковой скорости материала (тип 2) • Ударная волна не создается, если скорость детонации меньше звуковой скорости материала. локальность (тип 3)

  • Обеспечение хорошего сварного шва • Тип 1 • Материал за ударной волной сжимается до пикового давления и плотности • Локально создает значительную пластическую деформацию и приводит к значительному «ударному упрочнению» • Типы 2 и 3 • Давление создается перед точкой столкновения металлов. • Под воздействием большого давления металл перед точкой столкновения течет в пространство между пластинами и принимает форму высокоскоростной струи. • Вытесняет материал и удаляет нежелательные оксиды и другие нежелательные поверхностные пленки. • Отсутствие объемной диффузии. и только локальное плавление

  • Обеспечение хорошего сварного шва • Скорость детонации зависит от • Типа взрывчатого вещества • Состав взрывчатого вещества • Толщина слоя взрывчатого вещества • Можно найти в таблицах

  • Обеспечение хорошего сварного шва • Звуковая скорость материала оболочки может быть рассчитана следующим образом: где: K = адиабатический модуль объемной упругости, ρ = плотность материала оболочки, E = модуль Юнга. s облицовочного материала ע = коэффициент Пуассона облицовочного материала

  • Области применения • Можно соединять любой металл с достаточной прочностью и пластичностью

  • Области применения • Может сваривать большие площади металла • Может сваривать внутренние и внешние поверхности труб • Могут быть выполнены переходные соединения

  • История • Арнольд Хольцман и команда DuPont в Делавэре провели много исследований для разработки процесса.• В 1962 году Хольцман подала в США патент на сварку взрывом, получила патент в 1964 году и в 1965 году начала коммерческое производство биметаллической плакировки, сваренной взрывом. • Компания Detaclad получила лицензию на процесс и была куплена корпорацией Dynamic Materials (DMC). • Другие компании объединились с DMC и приобрели нынешнее название DMC Groupe SNPE, что сделало их всемирной компанией.

  • Обычные отрасли, в которых используется сварка взрывом • Химическая обработка • Переработка нефти • Гидрометаллургия • Выплавка алюминия • Судостроение • Электрохимия • Нефть и газ • Энергетика • Криогенная обработка • Целлюлозно-бумажная промышленность • Кондиционирование воздуха и чиллеры • Производство металлов

  • Примеры

  • Примеры Кольцо AI / SS диаметром 3 дюйма Медь / нержавеющая сталь Узел сверхвысокого вакуума 12 дюймов

  • Примеры • Даймы и четвертинки США в настоящее время представляют собой плакированные «сэндвич» из меди. -корпус и медно-никелевый сплав серебристого цвета

  • Цитированные работы • http: // www.Annualreviews.org/doi/pdf/10.1146/annurev.ms.05.080175.001141 • http://www.authorstream.com/Presentation/rock354-421051-explosive-welding-final-unconventional-machining-mp-iii-education- ppt-powerpoint / • Янг, Г. (2004). «Сварка взрывом, технический рост и коммерческая история» (PDF). Корпорация Dynamic Materials. http://www.dynamicmaterials.com/data/brochures/1-%20Young%20Paper%20on%20EXW%20History.pdf. Проверено 29 ноября 2010 г.

    ,

  • .